<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

殘余應力對金屬材料局部腐蝕行為的影響

陳恒 盧琳

陳恒, 盧琳. 殘余應力對金屬材料局部腐蝕行為的影響[J]. 工程科學學報, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012
引用本文: 陳恒, 盧琳. 殘余應力對金屬材料局部腐蝕行為的影響[J]. 工程科學學報, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012
CHEN Heng, LU Lin. Effect of residual stress on localized corrosion behavior of metallic materials[J]. Chinese Journal of Engineering, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012
Citation: CHEN Heng, LU Lin. Effect of residual stress on localized corrosion behavior of metallic materials[J]. Chinese Journal of Engineering, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012

殘余應力對金屬材料局部腐蝕行為的影響

doi: 10.13374/j.issn2095-9389.2019.07.012
基金項目: 

國家重點研發計劃資助項目 2018YFB0605502

國家自然科學基金聯合基金資助項目 U1560104

詳細信息
    通訊作者:

    盧琳, E-mail: lulin315@126.com

  • 中圖分類號: TG172.9

Effect of residual stress on localized corrosion behavior of metallic materials

More Information
  • 摘要: 基于殘余應力測試新方法與先進電化學測試技術的進展, 圍繞殘余應力類型和大小對金屬材料點蝕以及應力腐蝕行為的作用機理進行了總結和歸納. 研究發現, 盡管殘余壓應力對腐蝕行為的抑制作用得到了大量實驗的證實, 但是在不同條件下其作用方式以及機理不盡相同, 并且與材料的結構特點以及腐蝕產物等密切相關. 同時, 殘余拉應力的作用尚不明確, 受到材料類型和其他因素耦合的嚴重影響. 另外, 在某些環境下, 影響腐蝕行為的關鍵是殘余應力梯度或殘余應力的某個臨界值. 但是對有色金屬的研究表明殘余拉應力和壓應力均會導致基體中位錯和微應變等結構缺陷增加, 進而促進點蝕敏感性, 降低材料服役性能. 最后, 對目前研究存在的局限進行了討論和展望.

     

  • 圖  1  6%拉伸變形試樣沿直徑φ的殘余應力分布. (a) 試樣內部總殘余應力;(b) 試樣內部第Ⅰ類殘余應力;(c) 試樣內部第Ⅱ類殘余應力[32]

    Figure  1.  Distribution of longitudinal residual stress along the diameter φ of a 6% tensile-deformed steel: (a) total residual stresses; (b) 1st-type residual stresses; (c) 2nd-type residual stresses[32]

    圖  2  銅線上的彈性殘余應力分布情況,以圖中的十字交叉線作為殘余應力的參考點[40]

    Figure  2.  Elastic stress distribution in the Cu line; the elastic stresses are based on the reference points indicated by crosses[40]

    圖  3  實驗值與模擬值的比較[43]

    Figure  3.  Comparison of experiment and simulation values[43]

    圖  4  同一試樣點蝕前(a)、后(b)的原子力顯微鏡表面圖像[51]

    Figure  4.  Surface morphology of specimen before (a) and after pitting (b)[51]

    圖  5  無塑性變形試樣(a)和U型彎曲試樣(b)拉伸面的透射電鏡形貌[52]

    Figure  5.  TEM morphology of the specimen without plastic deformation (a) and tensile surface of U-bend specimen (b)[52]

    圖  6  晶粒尺寸和殘余應力對應力腐蝕開裂綜合作用示意圖. (a)拉伸應力作用;(b)晶粒細化與拉伸應力綜合作用;(c)晶粒細化和殘余壓應力綜合作用[58]

    Figure  6.  Schematic illustrations of the combined effect of grain size and residual stress on SCC initiation (RS-residual stress): (a) the negative effect of tensile residual stress; (b) the combined effect of grain refinement and tensile residual stress; (c) the duplicate beneficial effect of grain refinement and compressive residual stress[58]

    圖  7  裂紋密度與殘余應力關系圖[61]

    Figure  7.  Crack density as a function of residual stress, showing two regions of residual stress for micro-crack initiation[61]

    圖  8  經10%拉伸變形腐蝕后光學顯微照片(a)和透射電鏡照片(b)以及經16%壓縮變形試樣的腐蝕后光學顯微照片(c)和透射照片(d)[66]

    Figure  8.  Optical micrograph (a) and the TEM micrograph (b) of the sample of 10% tensile strain and the optical micrograph (c) and the TEM micrograph (d) of the sample of 16% compressive strain after corrosion tests[66]

    表  1  殘余應力分類信息[30]

    Table  1.   Classification information of residual stress[30]

    殘余應力類型 作用尺度/μm 典型缺陷
    第Ⅰ類殘余應力 >10 宏觀形變
    第Ⅱ類殘余應力 0.1~100 析出相
    第Ⅲ類殘余應力 < 0.1 空位和間隙
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Gong M. Metallic Corrosion Theory and Corrosion Control. Beijing: Chemical Industry Press, 2009

    龔敏. 金屬腐蝕理論及腐蝕控制. 北京: 化學工業出版社, 2009
    [2] Li X G. An Introduction to Corrosion and Protection of Materials. 2nd ed. Beijing: China Machine Press, 2017

    李曉剛. 材料腐蝕與防護概論. 2版. 北京: 機械工業出版社, 2017
    [3] Gutman. Mechanical Chemistry and Corrosion Protection of Metals. Beijing: Science Press, 1989

    古特曼. 金屬力學化學與腐蝕防護. 北京: 科學出版社, 1989
    [4] Rao S X, Zhu L Q, Li D, et al. Effects of mechanochemistry to the pitting behaviour of LY12CZ aluminum alloy. J Chin Soc Corros Prot, 2007, 27(4): 228 doi: 10.3969/j.issn.1005-4537.2007.04.009

    饒思賢, 朱立群, 李荻, 等. 力學化學效應對LY12CZ鋁合金點蝕行為的影響. 中國腐蝕與防護學報, 2007, 27(4): 228 doi: 10.3969/j.issn.1005-4537.2007.04.009
    [5] Gutman E M, Solovioff G, Eliezer D. The mechanochemical behaviour of type 316L stainless steel. Corros Sci, 1996, 38(7): 1141 doi: 10.1016/0010-938X(96)00008-X
    [6] Xiao J M, Cao C N. Principle of Material Corrosion. Beijing: Chemical Industry Press, 2002

    肖紀美, 曹楚南. 材料腐蝕學原理. 北京: 化學工業出版社, 2002
    [7] Meng F J, Wang J Q, Han E, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water. Corros Sci, 2010, 52(3): 928 http://www.sciencedirect.com/science/article/pii/S0010938X09005691
    [8] Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking. Corros Sci, 2011, 53(4): 1201 doi: 10.1016/j.corsci.2010.12.011
    [9] Yan Y J, Yan Y, He Y, et al. Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment. Int J Hydrogen Energy, 2015, 40(5): 2404 doi: 10.1016/j.ijhydene.2014.12.020
    [10] Zhang Z B, Obasi G, Morana R, et al. In-situ observation of hydrogen induced crack initiation in a nickel-based superalloy. Scripta Mater, 2017, 140: 40 doi: 10.1016/j.scriptamat.2017.07.006
    [11] Shen Z, Arioka K, Lozano-Pereza S. A mechanistic study of SCC in Alloy 600 through high-resolution characterization. Corros Sci, 2018, 132: 244 doi: 10.1016/j.corsci.2018.01.004
    [12] Zhou N, Pettersson R, Peng R L, et al. Effect of surface grinding on chloride induced SCC of 304L. Mater Sci Eng A, 2016, 658: 50 doi: 10.1016/j.msea.2016.01.078
    [13] Alvarez M G, Lapitz P, Ruzzante J. Analysis of acoustic emission signals generated from SCC propagation. Corros Sci, 2012, 55: 5 doi: 10.1016/j.corsci.2011.08.014
    [14] Masuda H. SKFM observation of SCC on SUS304 stainless steel. Corros Sci, 2007, 49(1): 120 doi: 10.1016/j.corsci.2006.05.014
    [15] Vignal V, Mary N, Oltra R, et al. A mechanical-electrochemical approach for the determination of precursor sites for pitting corrosion at the microscale. J Electrochem Soc, 2006, 153(9): B352 doi: 10.1149/1.2218762
    [16] Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research——Analysis of the role of stress on pitting sensitivity. Corros Sci, 2007, 49(1): 158 doi: 10.1016/j.corsci.2006.05.032
    [17] Long F Y, Yang Y, Wang S L, et al. Microscale electrochemical measurement technology and its application in corrosion. Corros Sci Prot Technol, 2015, 27(2): 194 https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201502015.htm

    龍鳳儀, 楊燕, 王樹立, 等. 微區電化學測量技術及其在腐蝕中的應用. 腐蝕科學與防護技術, 2015, 27(2): 194 https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201502015.htm
    [18] Vieira L, Lucas F L C, Fisssmer S F, et al. Scratch testing for micro-and nanoscale evaluation of tribocharging in DLC films containing silver nanoparticles using AFM and KPFM techniques. Surf Coat Technol, 2014, 260: 205 doi: 10.1016/j.surfcoat.2014.06.065
    [19] Marques A G, Izquierdo J, Souto R M, et al. SECM imaging of the cut edge corrosion of galvanized steel as a function of pH. Electrochim Acta, 2015, 153: 238 doi: 10.1016/j.electacta.2014.11.192
    [20] Mouanga M, Puiggali M, Devos O. EIS and LEIS investigation of aging low carbon steel with Zn-Ni coating. Electrochim Acta, 2013, 106: 82 doi: 10.1016/j.electacta.2013.05.021
    [21] Sim?es A M, Bastos A C, Ferreira M G, et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell. Corros Sci, 2007, 49(2): 726 doi: 10.1016/j.corsci.2006.04.021
    [22] Wang F Y, Mao K M, Li B. Prediction of residual stress fields from surface stress measurements. Int J Mech Sci, 2018, 140: 68 doi: 10.1016/j.ijmecsci.2018.02.043
    [23] Rae W, Lomas Z, Jackson M, et al. Measurements of residual stress and microstructural evolution in electron beam welded Ti-6Al-4V using multiple techniques. Mater Charact, 2017, 132: 10 doi: 10.1016/j.matchar.2017.07.042
    [24] Kartal M E, Kiwanuka R, Dunne F P E. Determination of sub-surface stresses at inclusions in single crystal superalloy using HR-EBSD, crystal plasticity and inverse eigenstrain analysis. Int J Solids Struct, 2015, 67-68: 27 doi: 10.1016/j.ijsolstr.2015.02.023
    [25] Salvati E, Korsunsky A M. An analysis of macro-and micro-scale residual stresses of Type Ⅰ, Ⅱ and Ⅲ using FIB-DIC micro-ring-core milling and crystal plasticity FE modelling. Int J Plast, 2017, 98: 123 doi: 10.1016/j.ijplas.2017.07.004
    [26] Withers P J. Residual stress and its role in failure. Rep Prog Phys, 2007, 70(12): 2211 doi: 10.1088/0034-4885/70/12/R04
    [27] Song J K, Huang X B, Gao Y K. Test and analysis technology of residual stress. Surf Technol, 2016, 45(4): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG199403000.htm

    宋俊凱, 黃小波, 高玉魁. 殘余應力測試技術分析. 表面技術, 2016, 45(4): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG199403000.htm
    [28] James M N. Residual stress influences on structural reliability. Eng Fail Anal, 2011, 18(8): 1909 doi: 10.1016/j.engfailanal.2011.06.005
    [29] Withers P J, Bhadeshia H K D H. Residual stress Part 1-measurement techniques. Mater Sci Technol, 2001, 17(4): 355 doi: 10.1179/026708301101509980
    [30] Pan L. Research on the Mechanisms and Related Experiments of Controlling Residual Stress in Carbon Steel based on Pulse Current Method[Dissertation]. Hangzhou: Zhejiang University, 2016

    潘龍. 脈沖電流法調控碳鋼殘余應力的機理及相關實驗研究[學位論文]. 杭州: 浙江大學, 2016
    [31] Groth B P, Langan S M, Haber R A, et al. Relating residual stresses to machining and finishing in silicon carbide. Ceram Int, 2016, 42(1): 799 doi: 10.1016/j.ceramint.2015.08.179
    [32] Niku-Lari A. Residual Stresses. Oxford: Pergamon Press, 1987
    [33] Huang X F, Liu Z W, Xie H M. Recent progress in residual stress measurement techniques. Acta Mech Solida Sin, 2013, 26(6): 570 doi: 10.1016/S0894-9166(14)60002-1
    [34] Wang N, Luo L, Liu Y, et al. Research progress on stress measurement technology for metal components. Chin J Sci Instrum, 2017, 38(10): 2508 doi: 10.3969/j.issn.0254-3087.2017.10.020

    王楠, 羅嵐, 劉勇, 等. 金屬構件殘余應力測量技術進展. 儀器儀表學報, 2017, 38(10): 2508 doi: 10.3969/j.issn.0254-3087.2017.10.020
    [35] Bemporad E, Brisotto M, Depero L E, et al. A critical comparison between XRD and FIB residual stress measurement techniques in thin films. Thin Solid Films, 2014, 572: 224 doi: 10.1016/j.tsf.2014.09.053
    [36] Wang Q M, Sun Y. Research development on the test methods of residual stress. J Mech Electr Eng Mag, 2011, 28(1): 11 doi: 10.3969/j.issn.1001-4551.2011.01.003

    王慶明, 孫淵. 殘余應力測試技術的進展與動向. 機電工程, 2011, 28(1): 11 doi: 10.3969/j.issn.1001-4551.2011.01.003
    [37] Sun G A, Chen B. The technology and application of residual stress analysis by neutron diffraction. Nucl Tech, 2007, 30(4): 286 doi: 10.3321/j.issn:0253-3219.2007.04.012

    孫光愛, 陳波. 中子衍射殘余應力分析技術及其應用. 核技術, 2007, 30(4): 286 doi: 10.3321/j.issn:0253-3219.2007.04.012
    [38] Wilkinson A J, Meaden G, Dingley D J. High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity. Ultramicroscopy, 2006, 106(4-5): 307 doi: 10.1016/j.ultramic.2005.10.001
    [39] Huang Y M, Pan C X. Micro-stress-strain analysis in materials based upon EBSD technique: a review. J Chin Electron Microsc Soc, 2010, 29(1): 1 doi: 10.3969/j.issn.1000-6281.2010.01.001

    黃亞敏, 潘春旭. 基于電子背散射衍射(EBSD)技術的材料微區應力應變狀態研究綜述. 電子顯微學報, 2010, 29(1): 1 doi: 10.3969/j.issn.1000-6281.2010.01.001
    [40] Sato H, Shishido N, Kamiya S, et al. Local distribution of residual stress of Cu in LSI interconnect. Mater Lett, 2014, 136: 362 doi: 10.1016/j.matlet.2014.08.088
    [41] Wen S, Dong A P, Lu Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting. Acta Metall Sin, 2018, 54(3): 393 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201803005.htm

    文舒, 董安平, 陸燕玲, 等. GH536高溫合金選區激光熔化溫度場和殘余應力的有限元模擬. 金屬學報, 2018, 54(3): 393 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201803005.htm
    [42] Bertali G, Scenini F, Burke M G. The effect of residual stress on the preferential intergranular oxidation of Alloy 600. Corros Sci, 2016, 111: 494 doi: 10.1016/j.corsci.2016.05.022
    [43] Wu Q, Xie D J, Si Y, et al. Simulation analysis and experimental study of milling surface residual stress of Ti-10V-2Fe-3Al. J Manuf Processes, 2018, 32: 530 doi: 10.1016/j.jmapro.2018.03.015
    [44] Kayser W, Bezold A, Broeckmann C. EBSD-based FEM simulation of residual stresses in a WC6wt. -%Co hardmetal. Int J Refract Met Hard Mater, 2018, 73: 139 doi: 10.1016/j.ijrmhm.2017.12.035
    [45] Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials-review. Corros Sci, 2015, 90: 5 doi: 10.1016/j.corsci.2014.10.006
    [46] Wang Y J, Han X P, Liu Y, et al. Effect of residual stress on corrosion sensitivity of carbon steel studied by SECM. Chem Res Chin Univ, 2014, 30(6): 1022 doi: 10.1007/s40242-014-4099-6
    [47] Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy. Electrochim Acta, 2008, 53(6): 2831 doi: 10.1016/j.electacta.2007.10.077
    [48] Xiong Q R, Liu D X, Zhang G J, et al. Influence of residual tensile stress on stress corrosion behavior of the base metal of X80 pipe//Proceedings of the ASME 2014 Pressure Vessels & Piping Conference. Anaheim, 2014: V001T01A073
    [49] Xiong Q R, Li W W, Fu A Q, et al. Effect of residual stress on electrochemistry corrosion resistance of X80 UOE pipe. Rare Met Mater Eng, 2012, 41(Suppl 2): 749 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2180.htm

    熊慶人, 李為衛, 付安慶, 等. 殘余應力對X80 UOE鋼管耐電化學腐蝕性能的影響. 稀有金屬材料工程, 2012, 41(增刊2): 749 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2180.htm
    [50] Trethewey K R, Wenman M, Chard-Tuckey P, et al. Correlation of meso-and micro-scale hardness measurements with the pitting of plastically-deformed Type 304L stainless steel. Corros Sci, 2008, 50(4): 1132 doi: 10.1016/j.corsci.2007.11.026
    [51] Martin F A, Bataillon C, Cousty J. In situ AFM detection of pit onset location on a 304L stainless steel. Corros Sci, 2008, 50(1): 84 doi: 10.1016/j.corsci.2007.06.023
    [52] Lai W Y, Xu X, Bai Z Q, et al. Effect of residual tensile stresses on electrochemical corrosion behavior of 304 stainless steel. Mater Mech Eng, 2016, 40(2): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201602024.htm

    來維亞, 徐欣, 白真權, 等. 殘余拉應力對304不銹鋼電化學腐蝕行為的影響. 機械工程材料, 2016, 40(2): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201602024.htm
    [53] Vignal V, Mary N, Oltra R, et al. A mechanical-electrochemical approach for the determination of precursor sites for pitting corrosion at the microscale. J Electrochem Soc, 2006, 153(9): B352 doi: 10.1149/1.2218762
    [54] Nguyen T T, Bolivar J, Shi Y, et al. A phase field method for modeling anodic dissolution induced stress corrosion crack propagation. Corros Sci, 2018, 132: 146 doi: 10.1016/j.corsci.2017.12.027
    [55] Nam J Y, Seo D H, Lee S Y, et al. The effect of residual stress on the SCC using ANSYS. Procedia Eng, 2011, 10: 2609 doi: 10.1016/j.proeng.2011.04.435
    [56] Bai L Y, Jiang K B, Gao L, et al. Influence mechanism of residual stress on stress corrosion behavior of welded structure. Hot Work Technol, 2017, 46(21): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201721049.htm

    白林越, 江克斌, 高磊, 等. 殘余應力對焊接結構應力腐蝕行為影響機理研究. 熱加工工藝, 2017, 46(21): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201721049.htm
    [57] Toribio J. Role of crack-tip residual stresses in stress corrosion behavior of prestressing steel. Constr Build Mater, 1998, 12(5): 283 doi: 10.1016/S0950-0618(98)00010-5
    [58] Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel. Corros Sci, 2012, 60: 145 doi: 10.1016/j.corsci.2012.03.044
    [59] Wei X L, Zhang C, Ling X. Effects of laser shock processing on corrosion resistance of AISI 304 stainless steel in acid chloride solution. J Alloys Compd, 2017, 723: 237 doi: 10.1016/j.jallcom.2017.06.283
    [60] Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des, 2011, 32(7): 3823 doi: 10.1016/j.matdes.2011.03.012
    [61] Zhang W Q, Fang K W, Hu Y J, et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel. Corros Sci, 2016, 108: 173 doi: 10.1016/j.corsci.2016.03.008
    [62] Van Boven G, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part Ⅰ: pitting and cracking occurrence. Acta Mater, 2007, 55(1): 29 doi: 10.1016/j.actamat.2006.08.037
    [63] Gravier J, Vignal V, Bissey-Breton S. Influence of residual stress, surface roughness and crystallographic texture induced by machining on the corrosion behaviour of copper in salt-fog atmosphere. Corros Sci, 2012, 61: 162 doi: 10.1016/j.corsci.2012.04.032
    [64] Pandey V, Singh J K, Chattopadhyay K, et al. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy. J Alloys Compd, 2017, 723: 826 doi: 10.1016/j.jallcom.2017.06.310
    [65] Chen T, John H, Xu J, et al. Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1: effect of machine hammer peening. Corros Sci, 2013, 77: 230 doi: 10.1016/j.corsci.2013.08.007
    [66] Zheng Y, Li Y, Chen J H, et al. Effects of tensile and compressive deformation on corrosion behavior of a Mg-Zn alloy. Corros Sci, 2015, 90: 445 doi: 10.1016/j.corsci.2014.10.043
    [67] Bertali G, Scenini F, Burke M G. The effect of residual stress on the preferential intergranular oxidation of Alloy 600. Corros Sci, 2016, 111: 494 doi: 10.1016/j.corsci.2016.05.022
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  1735
  • HTML全文瀏覽量:  652
  • PDF下載量:  93
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-06-06
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回