<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

兩種熱作模具鋼的高溫摩擦磨損性能

白植雄 左鵬鵬 計杰 吳曉春

白植雄, 左鵬鵬, 計杰, 吳曉春. 兩種熱作模具鋼的高溫摩擦磨損性能[J]. 工程科學學報, 2019, 41(7): 906-913. doi: 10.13374/j.issn2095-9389.2019.07.009
引用本文: 白植雄, 左鵬鵬, 計杰, 吳曉春. 兩種熱作模具鋼的高溫摩擦磨損性能[J]. 工程科學學報, 2019, 41(7): 906-913. doi: 10.13374/j.issn2095-9389.2019.07.009
BAI Zhi-xiong, ZUO Peng-peng, JI Jie, WU Xiao-chun. High temperature friction and wear properties of two hot work die steels[J]. Chinese Journal of Engineering, 2019, 41(7): 906-913. doi: 10.13374/j.issn2095-9389.2019.07.009
Citation: BAI Zhi-xiong, ZUO Peng-peng, JI Jie, WU Xiao-chun. High temperature friction and wear properties of two hot work die steels[J]. Chinese Journal of Engineering, 2019, 41(7): 906-913. doi: 10.13374/j.issn2095-9389.2019.07.009

兩種熱作模具鋼的高溫摩擦磨損性能

doi: 10.13374/j.issn2095-9389.2019.07.009
基金項目: 

國家重點研發計劃資助項目 2016YFB0300400

國家重點研發計劃資助項目 2016YFB0300402

詳細信息
    通訊作者:

    吳曉春, E-mail: wuxiaochun@t.shu.edu.cn

  • 中圖分類號: TG142.1+2

High temperature friction and wear properties of two hot work die steels

More Information
  • 摘要: 采用高溫摩擦磨損試驗機研究了HTCS-130和DAC55兩種熱作模具鋼在100~700℃范圍內的耐磨性差異及磨損機制, 并結合X射線衍射儀(XRD)、掃描電子顯微鏡(SEM)、光學輪廓儀等手段對表面相組成、磨損表面、截面形貌等進行分析. 結果表明: 兩種鋼的磨損率均在100~700℃范圍內呈現先增后減的趨勢; 其磨損機制表現為在100℃和300℃分別發生黏著磨損和黏著-輕微氧化磨損; 500℃時磨損機制轉變為單一氧化磨損, 磨損表面氧化層由FeO、Fe2O3和Fe3O4組成, 亞表面發生輕微軟化并出現塑性變形層; 700℃時磨損進入嚴重氧化磨損階段, 氧化物數量急劇增多, 同時由于馬氏體基體回復導致材料出現嚴重軟化, 磨損表面形成連續的氧化層. HTCS-130鋼優異的熱穩定性能使得基體具有較高硬度和更窄的摩擦軟化區, 能夠更好地支撐氧化層, 從而在700℃下比DAC55鋼更耐磨.

     

  • 圖  1  試驗鋼回火組織圖. (a)HTCS-130鋼;(b)DAC55鋼

    Figure  1.  Micrographs of tested steel after tempering: (a) HTCS-130 steel; (b) DAC55 steel

    圖  2  DAC55鋼和HTCS-130鋼磨損后表面形貌. (a)100 ℃,DAC55;(b)300 ℃,DAC55;(c)500 ℃,DAC55;(d)700 ℃,DAC55;(e)100 ℃,HTCS-130;(f)300 ℃,HTCS-130;(g)500 ℃,HTCS-130;(h)700 ℃,HTCS-130

    Figure  2.  Surface morphology of DAC55 steel and HTCS-130 steel after wear: (a) 100 ℃, DAC55; (b) 300 ℃, DAC55; (c) 500 ℃, DAC55; (d) 700 ℃, DAC55;(e) 100 ℃, HTCS-130; (f) 300 ℃, HTCS-130; (g) 500 ℃, HTCS-130; (h) 700 ℃, HTCS-130

    圖  3  圖 2(e)中點1的能譜圖

    Figure  3.  EDS analysis of Point 1 in Fig. 2(e)

    圖  4  DAC55鋼和HTCS-130鋼磨損后表面X射線衍射譜線分析

    Figure  4.  XRD spectrum analysis of the surface of DAC55 steel and HTCS-130 steel after wear

    圖  5  DAC55鋼和HTCS-130鋼磨損后截面形貌. (a)300 ℃,DAC55;(b)500 ℃,DAC55;(c)700 ℃,DAC55;(d)300 ℃,HTCS-130;(e)500 ℃,HTCS-130;(f)700 ℃,HTCS-130

    Figure  5.  Cross-section morphology of DAC55 steel and HTCS-130 steel after wear: (a)300 ℃, DAC55;(b)500 ℃, DAC55;(c)700 ℃, DAC55;(d)300 ℃, HTCS-130;(e)500 ℃, HTCS-130;(f)700 ℃, HTCS-130

    圖  6  DAC55鋼和HTCS-130鋼磨損后截面顯微硬度

    Figure  6.  Microhardness distribution on the cross-section of DAC55 steel and HTCS-130 steel after wear

    圖  7  DAC55鋼和HTCS-130鋼600 ℃保溫時的熱穩定曲線

    Figure  7.  Thermal stability curves of DAC55 steel and HTCS-130 steel holding at 600 ℃

    圖  8  DAC55鋼和HTCS-130鋼600 ℃保溫16 h回火后的組織形貌.(a)HTCS-130鋼;(b)DAC55鋼

    Figure  8.  Microstructures of DAC55 steel and HTCS-130 steel after tempering at 600 ℃, holding for 16 h: (a) HTCS-130 steel; (b) DAC55 steel

    圖  9  DAC55鋼和HTCS-130鋼摩擦系數. (a)100 ℃;(b)300 ℃;(c)500 ℃;(d)700 ℃

    Figure  9.  Friction coefficient of DAC55 steel and HTCS-130 steel: (a) 100 ℃; (b) 300 ℃; (c) 500 ℃; (d) 700 ℃

    圖  10  DAC55鋼和HTCS-130鋼的磨損率

    Figure  10.  Wear rate of DAC55 steel and HTCS-130 steel

    表  1  HTCS-130鋼和DAC55鋼的化學成分(質量分數)

    Table  1.   Table 1Chemical composition of HTCS-130 steel and DAC55 steel?%

    鋼號 C Si Mn Cr Mo Ni V W Co Fe
    HTCS-130 0.31 0.04 0.05 3.70 1.88 余量
    DAC55 0.35 0.21 0.53 5.06 2.41 0.61 0.77 0.65 余量
    下載: 導出CSV

    表  2  HTCS-130鋼和DAC55鋼碳化物類型及含量(質量分數)

    Table  2.   Types and contents of carbides in HTCS-130 steel and DAC55 steel?%

    鋼種 MC M2C M6C M23C6 總計
    HTCS-130 0.82 3.96 1.53 6.31
    DAC55 0.26 6.27 6.53
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Guan H, Luo A H. Development and application of a new hot-work die steel for hot stamping. Baosteel Tech Res, 2017, 11(2): 11 http://www.cnki.com.cn/Article/CJFDTotal-BSTR201702003.htm
    [2] Chen S H, Li S, Wu X C. High temperature friction and wear property of hot stamping tool steel SDCM. Tribology, 2016, 36(5): 538 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201605002.htm

    陳士浩, 李爽, 吳曉春. 熱沖壓模具鋼SDCM高溫摩擦磨損性能. 摩擦學學報, 2016, 36(5): 538 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201605002.htm
    [3] Zhou Q C, Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering. Mater Sci Eng A, 2011, 528(18): 5696 doi: 10.1016/j.msea.2011.04.024
    [4] Karbasian H, Tekkaya A E. A review on hot stamping. J Mater Process Technol, 2010, 210(15): 2103 doi: 10.1016/j.jmatprotec.2010.07.019
    [5] Stott F H, Glascott J, Wood G C. Models for the generation of oxides during sliding wear. Proc R Soc London Ser A, 1985, 402(1822): 167 doi: 10.1098/rspa.1985.0113
    [6] Li S, Chen S H, He X J, et al. A comparison of wear resistance of two types hot-work die steels at high temperature. Tribology, 2017, 37(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201701008.htm

    李爽, 陳士浩, 何西娟, 等. 兩種熱作模具鋼高溫耐磨性對比研究. 摩擦學學報, 2017, 37(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201701008.htm
    [7] Wang S Q, Wang L, Zhao Y T, et al. Mild-to-severe wear transition and transition region of oxidative wear in steels. Wear, 2013, 306(1-2): 311 doi: 10.1016/j.wear.2012.08.017
    [8] Hardell J, Hernandez S, Mozgovoy S, et al. Effect of oxide layers and near surface transformations on friction and wear during tool steel and boron steel interaction at high temperatures. Wear, 2015, 330-331: 223 doi: 10.1016/j.wear.2015.02.040
    [9] Anio?ek K, Kupka M, Barylski A. Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation. Wear, 2016, 356-357: 23 doi: 10.1016/j.wear.2016.03.007
    [10] Varga M, Rojacz H, Winkelmann H, et al. Wear reducing effects and temperature dependence of tribolayer formation in harsh environment. Tribol Int, 2013, 65: 190 doi: 10.1016/j.triboint.2013.03.003
    [11] Stott F H. High-temperature sliding wear of metals. Tribol Int, 2002, 35(8): 489 doi: 10.1016/S0301-679X(02)00041-5
    [12] Ghiotti A, Sgarabotto F, Bruschi S. A novel approach to wear testing in hot stamping of high strength boron steel sheets. Wear, 2013, 302(1-2): 1319 doi: 10.1016/j.wear.2012.12.051
    [13] Wu S, Fu H T, Lian Y, et al. Investigation on high temperature wear behavior of a newly developed hot-work tool steel. Tribology, 2016, 36(1): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201601018.htm

    吳帥, 付航濤, 連勇, 等. 一種新型熱作模具鋼的高溫磨損性能研究. 摩擦學學報, 2016, 36(1): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201601018.htm
    [14] Yuan X Y, Zhao Y, Chen L Q. Effect of Cr content on high-temperature oxidation behavior of high-manganese austenitic TWIP steel. J Northeast Univ Nat Sci, 2016, 37(2): 184 doi: 10.3969/j.issn.1005-3026.2016.02.008

    袁曉云, 趙陽, 陳禮清. Cr含量對高錳奧氏體TWIP鋼高溫氧化行為的影響. 東北大學學報(自然科學版), 2016, 37(2): 184 doi: 10.3969/j.issn.1005-3026.2016.02.008
    [15] Quinn T F J. The effect of "hot-spot" temperatures on the unlubricated wear of steel. A S L E Trans, 1967, 10(2): 158 doi: 10.1080/05698196708972175
    [16] Cui X H, Wang S Q, Jiang Q C, et al. High-temperature wear mechanism of cast hot-forging die steel 4Cr3Mo2NiV. Acta Metall Sin, 2005, 41(10): 1116 doi: 10.3321/j.issn:0412-1961.2005.10.022

    崔向紅, 王樹奇, 姜啟川, 等. 4Cr3Mo2NiV鑄造熱鍛模具鋼的高溫磨損機理. 金屬學報, 2005, 41(10): 1116 doi: 10.3321/j.issn:0412-1961.2005.10.022
    [17] Chen K M, Wang S Q, Yang Z R, et al. High temperature wear and oxide film of steels. Tribology, 2008, 28(5): 475 doi: 10.3321/j.issn:1004-0595.2008.05.017

    陳康敏, 王樹奇, 楊子潤, 等. 鋼的高溫氧化磨損及氧化物膜的研究. 摩擦學學報, 2008, 28(5): 475 doi: 10.3321/j.issn:1004-0595.2008.05.017
    [18] Han Y B, Xue X Y, Zhang T B, et al. Effects of hot compression on carbide precipitation behavior of Ni-20Cr-18W-1Mo superalloy. Trans Nonferrous Met Soc China, 2016, 26(11): 2883 doi: 10.1016/S1003-6326(16)64417-5
    [19] Wei M X, Wang F, Wang S Q, et al. Comparative research on the elevated-temperature wear resistance of a cast hot-working die steel. Mater Des, 2009, 30(9): 3608 doi: 10.1016/j.matdes.2009.02.023
    [20] Zhang Y B, Luo H, Wang G F. The effect of the microstructure on the wear-resistance in the welding deposited metal. Key Eng Mater, 2007, 353-358: 766 doi: 10.4028/www.scientific.net/KEM.353-358.766
    [21] Oh H, Lee S, Jung J, et al. Correlation of microstructure with the wear resistance and fracture toughness of duocast materials composed of high-chromium white cast iron and low-chromium steel. Metall Mater Trans A, 2001, 32(3): 515 doi: 10.1007/s11661-001-0068-z
    [22] Li S, Wu X C, Li X X, et al. High temperature performance of a Mo-W type hot work die steel of high thermal conductivity. Chin J Mater Res, 2017, 31(1): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201701005.htm

    李爽, 吳曉春, 黎欣欣, 等. 鉬鎢系高導熱率熱作模具鋼高溫性能. 材料研究學報, 2017, 31(1): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201701005.htm
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  1027
  • HTML全文瀏覽量:  449
  • PDF下載量:  39
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-06-26
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回