<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

富Nb復合碳氮化物對22Cr15Ni3.5CuNbN奧氏體鋼焊接模擬熱影響區組織和性能的影響

黃一君 張麥倉 謝錫善

黃一君, 張麥倉, 謝錫善. 富Nb復合碳氮化物對22Cr15Ni3.5CuNbN奧氏體鋼焊接模擬熱影響區組織和性能的影響[J]. 工程科學學報, 2019, 41(7): 889-897. doi: 10.13374/j.issn2095-9389.2019.07.007
引用本文: 黃一君, 張麥倉, 謝錫善. 富Nb復合碳氮化物對22Cr15Ni3.5CuNbN奧氏體鋼焊接模擬熱影響區組織和性能的影響[J]. 工程科學學報, 2019, 41(7): 889-897. doi: 10.13374/j.issn2095-9389.2019.07.007
HUANG Yi-jun, ZHANG Mai-cang, XIE Xi-shan. A simulation of the effect of Nb-rich carbonitride on the structure and properties of weld HAZ of 22Cr15Ni3.5CuNbN austenitic steel[J]. Chinese Journal of Engineering, 2019, 41(7): 889-897. doi: 10.13374/j.issn2095-9389.2019.07.007
Citation: HUANG Yi-jun, ZHANG Mai-cang, XIE Xi-shan. A simulation of the effect of Nb-rich carbonitride on the structure and properties of weld HAZ of 22Cr15Ni3.5CuNbN austenitic steel[J]. Chinese Journal of Engineering, 2019, 41(7): 889-897. doi: 10.13374/j.issn2095-9389.2019.07.007

富Nb復合碳氮化物對22Cr15Ni3.5CuNbN奧氏體鋼焊接模擬熱影響區組織和性能的影響

doi: 10.13374/j.issn2095-9389.2019.07.007
詳細信息
    通訊作者:

    張麥倉, E-mail: mczhang@ustb.edu.cn

  • 中圖分類號: TG401

A simulation of the effect of Nb-rich carbonitride on the structure and properties of weld HAZ of 22Cr15Ni3.5CuNbN austenitic steel

More Information
  • 摘要: 采用Gleeble熱模擬的方法, 通過模擬焊接過程中快速加熱和冷卻的熱循環過程, 得到1150~1300 ℃不同峰值溫度下22Cr15Ni3.5CuNbN奧氏體鋼擴大的熱影響區組織, 并對其進行沖擊性能分析. 對熱影響區組織的研究表明, 實驗鋼的母材中存在一定量富Nb復合碳氮化物, 有效釘扎晶界, 且與大量位錯纏結. 在焊接過程中, 該富Nb復合碳氮化物經歷溶解與重新析出的復雜過程: 當峰值溫度為1150 ℃時, 僅小顆粒的富Nb碳氮化物發生了溶解, 而峰值溫度為1300 ℃時, 富Nb復合碳氮化物經歷溶解與重新析出, 呈現網狀的組織形貌, 且其整體尺寸增加. 富Nb復合碳氮化物的演化導致了沖擊功的變化, 經歷焊接熱循環條件的實驗鋼較母材具有更高的沖擊韌性, 隨著峰值溫度的升高, 沖擊韌性呈現先升后降的趨勢, 其中在峰值溫度為1150 ℃時實驗鋼的沖擊韌性最高.

     

  • 圖  1  鎢極氬弧焊熱影響區各區域峰值溫度分布[12]

    Figure  1.  Peak temperature distribution in HAZ during TIG welding[12]

    圖  2  Gleeble熱模擬實驗中溫度-時間關系曲線

    Figure  2.  Curve of temperature against time during Gleeble thermal simulation

    圖  3  供貨態母材的顯微組織. (a)金相組織; (b)掃描電鏡圖像; (c)能譜分析結果

    Figure  3.  Microstructure of the supplied base metal: (a) OM; (b) SEM; (c) EDS

    圖  4  母材的透射電鏡分析結果. (a)晶界及晶內析出物; (b)晶內析出物與位錯的關系; (c)晶內析出物成分分布; (d)晶界析出物成分分布

    Figure  4.  TEM analysis results of the base metal: (a) precipitates distributed in grain boundaries and crystals; (b) relationship between dislocations and precipitates distributed in crystals; (c) composition of precipitates distributed in the crystal; (d) composition of precipitates distributed at grain boundaries

    圖  5  峰值溫度與沖擊性能的關系

    Figure  5.  Relationship between peak temperature and impact property

    圖  6  沖擊實驗斷口微觀形貌. (a1)母材,缺口近端纖維區; (a2)母材,缺口遠處放射區; (b1)Tm=1150 ℃,缺口近端纖維區; (b2)Tm=1150 ℃,缺口遠處放射區; (c1)Tm=1200 ℃,缺口近端纖維區; (c2) Tm=1200 ℃,缺口遠處放射區; (d1) Tm=1250 ℃, 缺口近端纖維區; (d2)Tm=1250 ℃,缺口遠處放射區; (e1) Tm=1300 ℃,缺口近端纖維區; (e2)Tm=1300 ℃,缺口遠處放射區; (e3) Tm=1300 ℃,斷口處析出物

    Figure  6.  Fracture morphology of impact test: (a1) base metal, proximal fiber zone close to the notch; (a2) base metal, radiation zone far from the notch; (b1) proximal fiber zone close to the notch at peak temperature of 1150 ℃; (b2) radiation zone far from the notch at peak temperature of 1150 ℃; (c1) proximal fiber zone close to the notch at peak temperature of 1200 ℃; (c2) radiation zone far from the notch at peak temperature of 1200 ℃; (d1) proximal fiber zone close to the notch at peak temperature of 1250 ℃; (d2) radiation zone far from the notch at peak temperature of 1250 ℃; (e1) proximal fiber zone close to the notch at peak temperature of 1300 ℃; (e2) radiation zone far from the notch at peak temperature of 1300 ℃; (e3) precipitate from fracture at peak temperature of 1300 ℃

    圖  7  不同峰值溫度下的組織情況. (a1~a3)峰值溫度Tm為1150 ℃; (b1~b3) 峰值溫度Tm為1300 ℃

    Figure  7.  Microstructures at different peak temperatures: (a1-a3)peak temperature is 1150 ℃; (b1-b3) peak temperature is 1300 ℃

    圖  8  峰值溫度達到1300 ℃時的晶界析出物成分分布. (a)晶界處的碳氮化物部分回溶; (b)三叉晶界處大塊碳氮化物的部分回溶

    Figure  8.  Composition of grain boundary precipitates at peak temperature of 1300 ℃: (a) partial dissolution of carbonitride at the grain boundary; (b) partial dissolution of lager carbonitride at triple junctions

    圖  9  峰值溫度為1300 ℃時富Nb復合碳氮化物形貌觀察. (a)復合生長的碳氮化物; (b)位錯平直化

    Figure  9.  Morphology of Nb-rich carbonitrides at a peak temperature of 1300 ℃: (a) carbonitrides with different morphologies; (b) dislocations that tend to be straight

    表  1  實驗用奧氏體耐熱鋼22Cr15Ni3.5CuNbN的化學成分(質量分數)

    Table  1.   Chemical composition of austenitic heat-resistant steel 22Cr15Ni3.5CuNbN?%

    C Si Mn P S Cr Cu Co Ni Nb N B Fe
    0.07 0.38 0.64 0.016 0.002 22.6 3.5 0.06 15.7 0.53 0.34 0.003 余量
    下載: 導出CSV

    表  2  析出相在奧氏體中的形成自由能ΔG

    Table  2.   Free energy of precipitates formation in austenite

    析出相 在γ-Fe中的ΔG/(J·mol-1)
    VC -81208+92.97T
    VN -155439+97.95T
    NbC -14400+60.28T
    NbN -196323+75.56T
    TiC -202602+83.76T
    TiN -298600+80.37T
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xie X S, Ai Z Q, Chi C Y, et al. R & D of the new type SP2215 austenitic heat-resistant steel for servicing 620~650 ℃ boiler super heater/reheater. Steel Pipe, 2018, 47(1): 23 doi: 10.3969/j.issn.1001-2311.2018.01.005

    謝錫善, 艾卓群, 遲成宇, 等. 620~650 ℃鍋爐過熱器/再熱器用新型奧氏體耐熱鋼SP2215的研發. 鋼管, 2018, 47(1): 23 doi: 10.3969/j.issn.1001-2311.2018.01.005
    [2] Brauer G, Jander J. Die nitride des niobs. Z Anorg Allg Chem, 1952, 270(1-4): 160 doi: 10.1002/zaac.19522700114
    [3] Yong Q L, Pei H Z, Tian J G, et al. Physico-metallurgical data of niobium in steel. J Iron Steel Res, 1998, 10(2): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON802.015.htm

    雍岐龍, 裴和中, 田建國, 等. 鈮在鋼中的物理冶金學基礎數據. 鋼鐵研究學報, 1998, 10(2): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON802.015.htm
    [4] Li H M, Cao J C, Sun L J, et al. Current situation and development of Nb microalloyed steel carbonitride precipitation behavior. Mater Rev, 2010, 24(9): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201017021.htm

    李鴻美, 曹建春, 孫力軍, 等. 含鈮微合金鋼碳氮化物析出行為研究的現狀及發展. 材料導報, 2010, 24(9): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201017021.htm
    [5] Irvine K J, Pickering F B, Gladman T. Grain-refined C-Mn steels. Iron Steel Inst J, 1967, 205(2): 161
    [6] Tan J. The Effect of Niobium Carbonitride on Austenite Static Recrystallization [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2006

    譚靜. 鈮的碳氮化物對奧氏體靜態再結晶的影響[學位論文]. 武漢: 武漢科技大學, 2006
    [7] Brooks J A, Thompson A W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int Mater Rev, 1991, 36(1): 16 doi: 10.1179/imr.1991.36.1.16
    [8] Robinson J L, Scott M H. Liquation cracking during the welding of austenitic stainless steels and nickel alloys. Philos Trans R Soc London Ser A, 1980, 295(1413): 105 doi: 10.1098/rsta.1980.0079
    [9] Bhaduri A K, Srinivasan G, Klenk A, et al. Study of hot cracking behaviour of 14Cr-15Ni-2.5Mo Ti-modified fully austenitic stainless steels using varestraint and hot ductility tests. Weld World, 2009, 53(1-2): 17 doi: 10.1007/BF03266688
    [10] Li L J, Messler R W. Dissolution kinetics of NbC particles in the heat-affected zone of type 347 austenitic stainless steel. Metall Mater Trans A, 2002, 33(7): 2031 doi: 10.1007/s11661-002-0035-3
    [11] Xie X S, Yu H Y, Chi C Y, et al. Method for Reinforcing Chromium-Nickel Type Austenitic Heat-Resistant Steel by Using Multiple Nano-Precipitation Phases: China Patent, 201310718590.7, 2014-03-19

    謝錫善, 于鴻垚, 遲成宇, 等. 用多種納米析出相復合強化鉻鎳型奧氏體耐熱鋼的方法: 中國專利, 201310718590.7, 2014-03-19
    [12] Liu W, Lu F G, Yang R J, et al. Gleeble simulation of the HAZ in Inconel 617 welding. J Mater Process Technol, 2015, 225: 221 doi: 10.1016/j.jmatprotec.2015.06.001
    [13] Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service. Acta Metall Sin, 2015, 51(11): 1325 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201511004.htm

    彭志方, 任文, 楊超, 等. HR3C鋼運行過熱器管的脆化與晶界M23C6相參量演化的關系. 金屬學報, 2015, 51(11): 1325 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201511004.htm
    [14] Zhang Z Y, Li Z D, Yong Q L, et al. Precipitation behavior of carbide during heating process in Nb and Nb-Mo micro-alloyed steels. Acta Metall Sin, 2015, 51(3): 315 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503007.htm

    張正延, 李昭東, 雍岐龍, 等. 升溫過程中Nb和Nb-Mo微合金化鋼中碳化物的析出行為研究. 金屬學報, 2015, 51(3): 315 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503007.htm
    [15] Huang Z W. Behavior of carbonitrides in micro-alloyed steels in austenite. Sichuan Metall, 1988(2): 51 https://www.cnki.com.cn/Article/CJFDTOTAL-SCYJ198802011.htm

    黃澤文. 微合金化鋼的碳氮化物在奧氏體中的行為. 四川冶金, 1988(2): 51 https://www.cnki.com.cn/Article/CJFDTOTAL-SCYJ198802011.htm
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  1054
  • HTML全文瀏覽量:  444
  • PDF下載量:  29
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-11-09
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回