<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

循環荷載下花崗巖應力門檻值的細觀能量演化及巖爆傾向性

張英 苗勝軍 郭奇峰 王培濤

張英, 苗勝軍, 郭奇峰, 王培濤. 循環荷載下花崗巖應力門檻值的細觀能量演化及巖爆傾向性[J]. 工程科學學報, 2019, 41(7): 864-873. doi: 10.13374/j.issn2095-9389.2019.07.004
引用本文: 張英, 苗勝軍, 郭奇峰, 王培濤. 循環荷載下花崗巖應力門檻值的細觀能量演化及巖爆傾向性[J]. 工程科學學報, 2019, 41(7): 864-873. doi: 10.13374/j.issn2095-9389.2019.07.004
ZHANG Ying, MIAO Sheng-jun, GUO Qi-feng, WANG Pei-tao. Meso-energy evolution and rock burst proneness of the stress thresholds of granite under triaxial cyclic loading and unloading test[J]. Chinese Journal of Engineering, 2019, 41(7): 864-873. doi: 10.13374/j.issn2095-9389.2019.07.004
Citation: ZHANG Ying, MIAO Sheng-jun, GUO Qi-feng, WANG Pei-tao. Meso-energy evolution and rock burst proneness of the stress thresholds of granite under triaxial cyclic loading and unloading test[J]. Chinese Journal of Engineering, 2019, 41(7): 864-873. doi: 10.13374/j.issn2095-9389.2019.07.004

循環荷載下花崗巖應力門檻值的細觀能量演化及巖爆傾向性

doi: 10.13374/j.issn2095-9389.2019.07.004
基金項目: 

國家自然科學基金資助項目 51604017

國家自然科學基金資助項目 51574014

"973"計劃資助項目 2015CB060200

詳細信息
    通訊作者:

    苗勝軍, E-mail: miaoshengjun@163.com

  • 中圖分類號: TD315

Meso-energy evolution and rock burst proneness of the stress thresholds of granite under triaxial cyclic loading and unloading test

More Information
  • 摘要: 為研究三軸循環加卸載條件下三山島花崗巖細觀能量演化規律, 采用顆粒流理論確定了花崗巖的應力門檻值(起裂應力σci、損傷應力σcd和峰值強度σf), 研究了應力門檻值對應的邊界能、應變能(線性接觸應變能和平行黏結應變能)、耗散能(摩擦能和阻尼能)、動能隨圍壓變化的規律, 并從能量角度建立了巖爆傾向性評價指標Wx. 結果表明: 三山島花崗巖不同圍壓下相應的σci/σf位于37.0%~44.8%區間, σcd/σf位于81.2%~89.0%區間, 隨著圍壓的增大, 起裂邊界能、應變能和耗散能呈線性關系增加, 損傷(峰值)邊界能、應變能和耗散能呈指數關系增加; 其中耗散能受圍壓影響最為敏感, 增幅倍數最大, 其次是邊界能, 最后為應變能. 圍壓對起裂應變能比例影響不大, 損傷和峰值應變能比例隨圍壓增大緩慢減小, 峰值應變能比例下降幅度最大. 基于巖爆傾向性評價指標Wx可知, 當圍壓在20 MPa內, 三山島花崗巖巖爆傾向性相對較小; 當圍壓達到30 MPa時巖爆傾向性開始迅速增加. 研究成果為巖爆傾向性的評價提供了新的參考指標, 進一步為井下巖體工程的穩定性研究提供了新思路.

     

  • 圖  1  試驗設備. (a) WEP-600試驗機;(b) MTS810試驗機

    Figure  1.  Test equipments: (a) WEP-600; (b) MTS810

    圖  2  混合顆粒黏結模型.(a) 單軸模型;(b) 三軸模型;(c) 巴西劈裂模型

    Figure  2.  Mixed bonded particle model: (a) uniaxial compression model; (b) triaxial compression model; (c) Brazilian splitting model

    圖  3  花崗巖巴西劈裂試驗和模擬結果對比

    Figure  3.  Results of Brazilian splitting test of granite obtained from numerical simulation and experiments

    圖  4  花崗巖單軸壓縮試驗和模擬結果對比

    Figure  4.  Results of uniaxial compression test of granite obtained from numerical simulation and experiments

    圖  5  不同圍壓下模擬和試驗的強度包絡線對比

    Figure  5.  Comparison of the strength envelopes of simulations and tests under different confining pressures

    圖  6  三軸循環加卸載條件下裂紋不同發展階段的應力-應變曲線(σ3=5 MPa)

    Figure  6.  Stress-strain diagram obtained from triaxial cyclic loading and unloading showing different stages of crack development(σ3=5 MPa)

    圖  7  不同細觀能量動態變化曲線(σ3=5 MPa). (a) 邊界能;(b) 線性接觸應變能;(c) 平行黏結應變能;(d) 摩擦能;(e) 阻尼能;(f) 動能

    Figure  7.  Different meso-energy dynamic curves(σ3=5 MPa): (a) boundary energy; (b) linear contact strain energy; (c) parallel bond strain energy; (d) friction energy; (e) damping energy; (f) kinetic energy

    圖  8  巖石變形破壞過程中能量與應力變化曲線(σ3=5 MPa)

    Figure  8.  Energy and stress curves of rock deformation and failure process(σ3=5 MPa)

    圖  9  不同圍壓下應力門檻值細觀能量變化曲線. (a) 邊界能;(b) 應變能;(c) 耗散能

    Figure  9.  Energy evolution curves of stress thresholds under different confining pressures: (a) boundary energy; (b) strain energy; (c) dissipation energy

    圖  10  不同圍壓下應力門檻值應變能比例變化曲線

    Figure  10.  Strain energy ratio curves of stress thresholds under different confining pressures

    圖  11  不同圍壓循環加卸載下Wet指標變化曲線

    Figure  11.  Variation of Wet under different confining pressures

    圖  12  不同圍壓循環加卸載下Wcf指標變化曲線

    Figure  12.  Variation of Wcf under different confining pressures

    圖  13  不同圍壓循環加卸載下Wx指標變化曲線

    Figure  13.  Variation of Wx under different confining pressures

    表  1  三山島花崗巖試驗力學特性

    Table  1.   Mechanical properties of Sanshandao granite test

    密度/(kg·m-3) 單軸抗拉強度/MPa 拉伸彈性模量/GPa 單軸抗壓強度/MPa 壓縮彈性模量/GPa 單軸起裂應力/MPa 單軸損傷應力/MPa 泊松比 拉壓比 摩擦角/(°) 內聚力/MPa
    2686 12.40 40.99 94.37 43.98 37.75 81.16 0.20 0.13 49.96 17.19
    下載: 導出CSV

    表  2  混合顆粒黏結模型細觀力學參數

    Table  2.   Meso-mechanical parameters of the mixed bonded particle model

    礦物名稱 Rmin/mm Rmax/mm ρ/(kg·m-3) μ E*/GPa kr E*/GPa λ n σc/MPa c/MPa ?/(°)
    斜長石 1.5 2.5 2560 0.5 96.41 1.33 137.64 1 0.36 224 224 12.5
    鉀長石 1.5 2.5 2630 0.5 105.93 1.33 151.23 1 0.36 252 252 15.0
    石英 1.5 2.5 2650 0.5 103.42 1.33 147.64 1 0.36 235.2 235.2 13.5
    黑云母 1.5 2.5 3050 0.5 32.83 1.33 46.86 1 0.36 196 196 10.0
    下載: 導出CSV

    表  3  巖爆傾向性評價指標

    Table  3.   Evaluation indexes for rock burst proneness

    評價指標 計算公式 指標分類標準
    Wet Wet=ER/ED
    ER為卸載時恢復的彈性應變能,
    ED為加卸載循環中耗散的能量.
    Singh[19]的硬巖分類標準:
    Wet < 10,弱巖爆傾向;
    10≤Wet < 15,中等巖爆傾向;
    Wet≥15,強烈巖爆傾向.
    Wcf Wcf=E1/E2
    E1為峰前總能量,
    E2為峰后總能量.
    Wcf≤1,無巖爆傾向;
    1 < Wcf≤2,弱巖爆傾向;
    2 < Wcf≤3,中等巖爆傾向;
    Wcf>3,強烈巖爆傾向.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhou H, Meng F Z, Zhang C Q, et al. Characteristics and mechanism of occurrence of stress thresholds and corresponding strain for hard rock. Chin J Rock Mech Eng, 2015, 34(8): 1513 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508002.htm

    周輝, 孟凡震, 張傳慶, 等. 硬巖應力-應變門檻值特點及產生機制. 巖石力學與工程學報, 2015, 34(8): 1513 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508002.htm
    [2] Heng S, Yang C H, Li Z, et al. Shale brittleness estimation based on energy dissipation. J Cent South Univ Sci Technol, 2016, 47(2): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm

    衡帥, 楊春和, 李芷, 等. 基于能量耗散的頁巖脆性特征. 中南大學學報(自然科學版), 2016, 47(2): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm
    [3] Wen T, Tang H M, Liu Y R, et al. Energy and damage analysis of slate during triaxial compression under different confining pressures. Coal Geol Expl, 2016, 44(3): 80 doi: 10.3969/j.issn.1001-1986.2016.03.015

    溫韜, 唐輝明, 劉佑榮, 等. 不同圍壓下板巖三軸壓縮過程能量及損傷分析. 煤田地質與勘探, 2016, 44(3): 80 doi: 10.3969/j.issn.1001-1986.2016.03.015
    [4] Deng H F, Hu Y, Li J L, et al. The evolution of sandstone energy dissipation under cyclic loading and unloading. Chin J Rock Mech Eng, 2016, 35(Suppl 1): 2869 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1032.htm

    鄧華鋒, 胡玉, 李建林, 等. 循環加卸載過程中砂巖能量耗散演化規律. 巖石力學與工程學報, 2016, 35(增刊1): 2869 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1032.htm
    [5] Xie H P, Ju Y, Li L Y, et al. Energy mechanism of deformation and failure of rock masses. Chin J Rock Mech Eng, 2008, 27(9): 1729 doi: 10.3321/j.issn:1000-6915.2008.09.001

    謝和平, 鞠楊, 黎立云, 等. 巖體變形破壞過程的能量機制. 巖石力學與工程學報, 2008, 27(9): 1729 doi: 10.3321/j.issn:1000-6915.2008.09.001
    [6] Zhang Z Z, Gao F. Experimental investigations on energy evolution characteristics of coal, sandstone and granite during loading process. J China Univ Mining Technol, 2015, 44(3): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm

    張志鎮, 高峰. 3種巖石能量演化特征的試驗研究. 中國礦業大學學報, 2015, 44(3): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm
    [7] Kidybiński A. Bursting liability indices of coal. Int J Rock Mech Min Sci Geomech Abstracts, 1981, 18(4): 295 doi: 10.1016/0148-9062(81)91194-3
    [8] Wang J A, Park H D. Comprehensive prediction of rock burst based on analysis of strain energy in rocks. Tunnell Undergr Space Technol, 2001, 16(1): 49 doi: 10.1016/S0886-7798(01)00030-X
    [9] Aubertin M, Gill D E, Simon R. On the use of the brittleness index modified (BIM) to estimate the post-peak behavior or rocks//1st North American Rock Mechanics Symposium. Austin, 1994: ARMA-1994-0945
    [10] Liu S X, Lu S Z, Chen Y. Study on rockburst proneness of a deep mine based on multiple criterions. Min Res Dev, 2017, 37(2): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201702003.htm

    劉樹新, 魯思佐, 陳陽. 基于多重判據的某深部礦區巖爆傾向性研究. 礦業研究與開發, 2017, 37(2): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201702003.htm
    [11] Tang L Z, Pan C L, Wang W X. Surplus energy index for analyzing rock burst proneness. J Cent South Univ Technol, 2002, 33(2): 129 doi: 10.3969/j.issn.1672-3104.2002.02.004

    唐禮忠, 潘長良, 王文星. 用于分析巖爆傾向性的剩余能量指數. 中南工業大學學報, 2002, 33(2): 129 doi: 10.3969/j.issn.1672-3104.2002.02.004
    [12] Tang L Z, Wang W X. New rock burst proneness index. Chin J Rock Mech Eng, 2002, 21(6): 874 doi: 10.3321/j.issn:1000-6915.2002.06.022

    唐禮忠, 王文星. 一種新的巖爆傾向性指標. 巖石力學與工程學報, 2002, 21(6): 874 doi: 10.3321/j.issn:1000-6915.2002.06.022
    [13] Simon R. Analysis of Fault-Slip Mechanisms in Hard Rock Mining [Dissertation]. Montreal: McGill University, 1999
    [14] Potyondy D O, Cundall P A. A bonded-particle model for rock. Int J Rock Mech Min Sci, 2004, 41(8): 1329 doi: 10.1016/j.ijrmms.2004.09.011
    [15] Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstracts, 1994, 31(6): 643 doi: 10.1016/0148-9062(94)90005-1
    [16] Brace W F, Paulding Jr B W, Scholz C H. Dilatancy in the fracture of crystalline rocks. J Geophys Res, 1966, 71(16): 3939 doi: 10.1029/JZ071i016p03939
    [17] Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression. Int J Fract Mech, 1965, 1(3): 137
    [18] Hallbauer D K, Wagner H, Cook N G W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Min Sci Geomech Abstracts, 1973, 10(6): 713 doi: 10.1016/0148-9062(73)90015-6
    [19] Singh S P. Classification of mine workings according to their rockburst proneness. Min Sci Technol, 1989, 8(3): 253 doi: 10.1016/S0167-9031(89)90404-0
    [20] Cai M F, Ji D, Guo Q F. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance. Chin J Rock Mech Eng, 2013, 32(10): 1973 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm

    蔡美峰, 冀東, 郭奇峰. 基于地應力現場實測與開采擾動能量積聚理論的巖爆預測研究. 巖石力學與工程學報, 2013, 32(10): 1973 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm
  • 加載中
圖(13) / 表(3)
計量
  • 文章訪問數:  938
  • HTML全文瀏覽量:  351
  • PDF下載量:  29
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-04
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回