Meso-energy evolution and rock burst proneness of the stress thresholds of granite under triaxial cyclic loading and unloading test
-
摘要: 為研究三軸循環加卸載條件下三山島花崗巖細觀能量演化規律, 采用顆粒流理論確定了花崗巖的應力門檻值(起裂應力σci、損傷應力σcd和峰值強度σf), 研究了應力門檻值對應的邊界能、應變能(線性接觸應變能和平行黏結應變能)、耗散能(摩擦能和阻尼能)、動能隨圍壓變化的規律, 并從能量角度建立了巖爆傾向性評價指標Wx. 結果表明: 三山島花崗巖不同圍壓下相應的σci/σf位于37.0%~44.8%區間, σcd/σf位于81.2%~89.0%區間, 隨著圍壓的增大, 起裂邊界能、應變能和耗散能呈線性關系增加, 損傷(峰值)邊界能、應變能和耗散能呈指數關系增加; 其中耗散能受圍壓影響最為敏感, 增幅倍數最大, 其次是邊界能, 最后為應變能. 圍壓對起裂應變能比例影響不大, 損傷和峰值應變能比例隨圍壓增大緩慢減小, 峰值應變能比例下降幅度最大. 基于巖爆傾向性評價指標Wx可知, 當圍壓在20 MPa內, 三山島花崗巖巖爆傾向性相對較小; 當圍壓達到30 MPa時巖爆傾向性開始迅速增加. 研究成果為巖爆傾向性的評價提供了新的參考指標, 進一步為井下巖體工程的穩定性研究提供了新思路.Abstract: To study the meso-energy evolution of Sanshandao granite under triaxial cyclic loading and unloading, the stress thresholds (the crack initiation stress σci, crack damage stress σcd, and peak stress σf) of Sanshandao granite were determined; the variation law of the boundary energy, strain energy (linear contact strain energy and parallel bond strain energy), dissipation energy (friction energy and damping energy), and kinetic energy corresponding to each stress threshold with confining pressures was analyzed; and a new index Wx for evaluating the rock burst proneness was established from the perspective of energy based on a simulation using PFC3D. The results show that the corresponding σci/σf is in the range of 37.0% to 44.8%, and σcd/σf is in the range of 81.2% to 89.0% under different confining pressures. With the increase of confining pressure, the boundary energy, strain energy, and dissipation energy of the crack initiation increase linearly, and the boundary energy, strain energy, and dissipation energy of the crack damage and peak increase exponentially. Among them, the dissipation energy exhibits the maximum increment with the change in confining pressure, followed by the boundary energy, and then the strain energy. The confining pressure has little effect on the proportion of the strain energy of crack initiation. Moreover, with increasing pressure, the proportion of the crack damage and the peak strain energy decrease slowly; however, the proportion of peak strain energy decreases to a greater extent. According to the new index Wx for the evaluation of the rock burst proneness, when the confining pressure was less than 20 MPa, the rock burst proneness of Sanshandao granite was relatively small, and when the confining pressure reached 30 MPa, the rock burst proneness began to increase rapidly. This study provides a new reference index for the evaluation of rock burst proneness and further provides a new idea for the stability study of underground rock mass engineering.
-
表 1 三山島花崗巖試驗力學特性
Table 1. Mechanical properties of Sanshandao granite test
密度/(kg·m-3) 單軸抗拉強度/MPa 拉伸彈性模量/GPa 單軸抗壓強度/MPa 壓縮彈性模量/GPa 單軸起裂應力/MPa 單軸損傷應力/MPa 泊松比 拉壓比 摩擦角/(°) 內聚力/MPa 2686 12.40 40.99 94.37 43.98 37.75 81.16 0.20 0.13 49.96 17.19 表 2 混合顆粒黏結模型細觀力學參數
Table 2. Meso-mechanical parameters of the mixed bonded particle model
礦物名稱 Rmin/mm Rmax/mm ρ/(kg·m-3) μ E*/GPa kr E*/GPa λ n σc/MPa c/MPa ?/(°) 斜長石 1.5 2.5 2560 0.5 96.41 1.33 137.64 1 0.36 224 224 12.5 鉀長石 1.5 2.5 2630 0.5 105.93 1.33 151.23 1 0.36 252 252 15.0 石英 1.5 2.5 2650 0.5 103.42 1.33 147.64 1 0.36 235.2 235.2 13.5 黑云母 1.5 2.5 3050 0.5 32.83 1.33 46.86 1 0.36 196 196 10.0 表 3 巖爆傾向性評價指標
Table 3. Evaluation indexes for rock burst proneness
評價指標 計算公式 指標分類標準 Wet Wet=ER/ED
ER為卸載時恢復的彈性應變能,
ED為加卸載循環中耗散的能量.Singh[19]的硬巖分類標準:
Wet < 10,弱巖爆傾向;
10≤Wet < 15,中等巖爆傾向;
Wet≥15,強烈巖爆傾向.Wcf Wcf=E1/E2
E1為峰前總能量,
E2為峰后總能量.Wcf≤1,無巖爆傾向;
1 < Wcf≤2,弱巖爆傾向;
2 < Wcf≤3,中等巖爆傾向;
Wcf>3,強烈巖爆傾向.259luxu-164 -
參考文獻
[1] Zhou H, Meng F Z, Zhang C Q, et al. Characteristics and mechanism of occurrence of stress thresholds and corresponding strain for hard rock. Chin J Rock Mech Eng, 2015, 34(8): 1513 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508002.htm周輝, 孟凡震, 張傳慶, 等. 硬巖應力-應變門檻值特點及產生機制. 巖石力學與工程學報, 2015, 34(8): 1513 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508002.htm [2] Heng S, Yang C H, Li Z, et al. Shale brittleness estimation based on energy dissipation. J Cent South Univ Sci Technol, 2016, 47(2): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm衡帥, 楊春和, 李芷, 等. 基于能量耗散的頁巖脆性特征. 中南大學學報(自然科學版), 2016, 47(2): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm [3] Wen T, Tang H M, Liu Y R, et al. Energy and damage analysis of slate during triaxial compression under different confining pressures. Coal Geol Expl, 2016, 44(3): 80 doi: 10.3969/j.issn.1001-1986.2016.03.015溫韜, 唐輝明, 劉佑榮, 等. 不同圍壓下板巖三軸壓縮過程能量及損傷分析. 煤田地質與勘探, 2016, 44(3): 80 doi: 10.3969/j.issn.1001-1986.2016.03.015 [4] Deng H F, Hu Y, Li J L, et al. The evolution of sandstone energy dissipation under cyclic loading and unloading. Chin J Rock Mech Eng, 2016, 35(Suppl 1): 2869 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1032.htm鄧華鋒, 胡玉, 李建林, 等. 循環加卸載過程中砂巖能量耗散演化規律. 巖石力學與工程學報, 2016, 35(增刊1): 2869 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1032.htm [5] Xie H P, Ju Y, Li L Y, et al. Energy mechanism of deformation and failure of rock masses. Chin J Rock Mech Eng, 2008, 27(9): 1729 doi: 10.3321/j.issn:1000-6915.2008.09.001謝和平, 鞠楊, 黎立云, 等. 巖體變形破壞過程的能量機制. 巖石力學與工程學報, 2008, 27(9): 1729 doi: 10.3321/j.issn:1000-6915.2008.09.001 [6] Zhang Z Z, Gao F. Experimental investigations on energy evolution characteristics of coal, sandstone and granite during loading process. J China Univ Mining Technol, 2015, 44(3): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm張志鎮, 高峰. 3種巖石能量演化特征的試驗研究. 中國礦業大學學報, 2015, 44(3): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm [7] Kidybiński A. Bursting liability indices of coal. Int J Rock Mech Min Sci Geomech Abstracts, 1981, 18(4): 295 doi: 10.1016/0148-9062(81)91194-3 [8] Wang J A, Park H D. Comprehensive prediction of rock burst based on analysis of strain energy in rocks. Tunnell Undergr Space Technol, 2001, 16(1): 49 doi: 10.1016/S0886-7798(01)00030-X [9] Aubertin M, Gill D E, Simon R. On the use of the brittleness index modified (BIM) to estimate the post-peak behavior or rocks//1st North American Rock Mechanics Symposium. Austin, 1994: ARMA-1994-0945 [10] Liu S X, Lu S Z, Chen Y. Study on rockburst proneness of a deep mine based on multiple criterions. Min Res Dev, 2017, 37(2): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201702003.htm劉樹新, 魯思佐, 陳陽. 基于多重判據的某深部礦區巖爆傾向性研究. 礦業研究與開發, 2017, 37(2): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201702003.htm [11] Tang L Z, Pan C L, Wang W X. Surplus energy index for analyzing rock burst proneness. J Cent South Univ Technol, 2002, 33(2): 129 doi: 10.3969/j.issn.1672-3104.2002.02.004唐禮忠, 潘長良, 王文星. 用于分析巖爆傾向性的剩余能量指數. 中南工業大學學報, 2002, 33(2): 129 doi: 10.3969/j.issn.1672-3104.2002.02.004 [12] Tang L Z, Wang W X. New rock burst proneness index. Chin J Rock Mech Eng, 2002, 21(6): 874 doi: 10.3321/j.issn:1000-6915.2002.06.022唐禮忠, 王文星. 一種新的巖爆傾向性指標. 巖石力學與工程學報, 2002, 21(6): 874 doi: 10.3321/j.issn:1000-6915.2002.06.022 [13] Simon R. Analysis of Fault-Slip Mechanisms in Hard Rock Mining [Dissertation]. Montreal: McGill University, 1999 [14] Potyondy D O, Cundall P A. A bonded-particle model for rock. Int J Rock Mech Min Sci, 2004, 41(8): 1329 doi: 10.1016/j.ijrmms.2004.09.011 [15] Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstracts, 1994, 31(6): 643 doi: 10.1016/0148-9062(94)90005-1 [16] Brace W F, Paulding Jr B W, Scholz C H. Dilatancy in the fracture of crystalline rocks. J Geophys Res, 1966, 71(16): 3939 doi: 10.1029/JZ071i016p03939 [17] Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression. Int J Fract Mech, 1965, 1(3): 137 [18] Hallbauer D K, Wagner H, Cook N G W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Min Sci Geomech Abstracts, 1973, 10(6): 713 doi: 10.1016/0148-9062(73)90015-6 [19] Singh S P. Classification of mine workings according to their rockburst proneness. Min Sci Technol, 1989, 8(3): 253 doi: 10.1016/S0167-9031(89)90404-0 [20] Cai M F, Ji D, Guo Q F. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance. Chin J Rock Mech Eng, 2013, 32(10): 1973 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm蔡美峰, 冀東, 郭奇峰. 基于地應力現場實測與開采擾動能量積聚理論的巖爆預測研究. 巖石力學與工程學報, 2013, 32(10): 1973 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm -