<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高耐蝕鋅鋁鎂鍍層研究現狀

杜昕 張滿倉 段生朝 徐榮嬛 鄒明 董世文 郭漢杰 郭靖

杜昕, 張滿倉, 段生朝, 徐榮嬛, 鄒明, 董世文, 郭漢杰, 郭靖. 高耐蝕鋅鋁鎂鍍層研究現狀[J]. 工程科學學報, 2019, 41(7): 847-856. doi: 10.13374/j.issn2095-9389.2019.07.002
引用本文: 杜昕, 張滿倉, 段生朝, 徐榮嬛, 鄒明, 董世文, 郭漢杰, 郭靖. 高耐蝕鋅鋁鎂鍍層研究現狀[J]. 工程科學學報, 2019, 41(7): 847-856. doi: 10.13374/j.issn2095-9389.2019.07.002
DU Xin, ZHANG Man-cang, DUAN Sheng-chao, XU Rong-huan, ZOU Ming, DONG Shi-wen, GUO Han-jie, GUO Jing. Research status of high corrosion-resistant Zn-Al-Mg coating[J]. Chinese Journal of Engineering, 2019, 41(7): 847-856. doi: 10.13374/j.issn2095-9389.2019.07.002
Citation: DU Xin, ZHANG Man-cang, DUAN Sheng-chao, XU Rong-huan, ZOU Ming, DONG Shi-wen, GUO Han-jie, GUO Jing. Research status of high corrosion-resistant Zn-Al-Mg coating[J]. Chinese Journal of Engineering, 2019, 41(7): 847-856. doi: 10.13374/j.issn2095-9389.2019.07.002

高耐蝕鋅鋁鎂鍍層研究現狀

doi: 10.13374/j.issn2095-9389.2019.07.002
基金項目: 

國家自然科學基金聯合基金資助項目 U1560203

國家自然科學基金資助項目 51274031

詳細信息
    通訊作者:

    郭漢杰, E-mail: guohanjie@ustb.edu.cn

  • 中圖分類號: TG174.44

Research status of high corrosion-resistant Zn-Al-Mg coating

More Information
  • 摘要: 從鋅鋁鎂鍍層的熔池界面反應、鍍層組織、表面和切邊腐蝕機理、腐蝕產物類型變化等方面, 對高耐蝕鋅鋁鎂鍍層的研究進展進行了詳細分析. 根據Al成分含量的不同, 將商用及實驗室鋅鋁鎂鍍層分為"低鋁"、"中鋁"和"高鋁"鋅鋁鎂三種類型: 不同類型的鋅鋁鎂鍍層的金屬間化合物層生長動力學存在差異, 為了控制鍍層厚度, 應合理控制浸鍍時間、溫度與熔池成分; 凝固組織也存在差異, "低鋁"與"中鋁"會析出Al或Zn初晶、Zn/MgZn2二元共晶組織、Zn/MgZn2/Al三元共晶組織, "高鋁"會產生富Al枝晶、枝晶間富Zn相、Mg2Si相、MgZn2相, 不產生共晶組織; 發生表面腐蝕時, "低鋁"與"中鋁"中MgZn2相先電離, 并生成堿性鋅鹽、雙層氫氧化物等致密的腐蝕產物, 抑制腐蝕; 發生切邊腐蝕時, 鋅鋁鎂會出現自修復現象, 在切邊鋼基或鍍層破損處形成堿性鋅鹽, 保護基體.

     

  • 圖  1  熱浸鍍熔池成分[16]

    Figure  1.  Hot dip bath composition[16]

    圖  2  浸鍍過程中鋼基與熔池反應[22]

    Figure  2.  Reaction between steel and molten melts during immersion process[22]

    圖  3  鋼基/11Al-3Mg-0.2Si-Zn擴散偶[5].(a)擴散偶示意圖;(b)鋼基600 ℃浸鍍20 min所得金屬間化合物

    Figure  3.  Steel/11Al-3Mg-0.2Si-Zn diffusion couple[5]: (a) schematic diagram; (b) IMC obtained by immersion at 600 ℃ for 20 min

    圖  4  “低鋁”-Zn-2Al-2Mg鍍層顯微組織[2].(a)表面;(b)截面(Z-初生Zn相;A-富Al相;B-Zn/MgZn2共晶組織;T-Zn/MgZn2/Al共晶組織)

    Figure  4.  "Low-aluminum"-Zn-2Al-2Mg coating microstructure[2]: (a) surface; (b) cross section(Z-primary Zn phase; A-rich Al phase; B-Zn/MgZn2 eutectic; T-Zn/MgZn2/Al eutectic)

    圖  5  “中鋁”-11Al-3Mg-Zn. (a)截面[25];(b)表面[19]

    Figure  5.  "Middle-aluminum"-11Al-3Mg-Zn: (a) cross section[25]; (b) surface[19]

    圖  6  “高鋁”-55Al-xMg-1.6Si-Zn鍍層表面組織[26]. (a)x=1.5;(b) x=2.5(A-富Al相;B-枝晶間富Zn相;C-MgZn2;D-Mg2Si)

    Figure  6.  "High-aluminum"-55Al-xMg-1.6Si-Zn coating[26]: (a) x=1.5;(b) x=2.5(A-rich Al phase; B-dendritic Zn-rich phase; C-MgZn2 phase; D-Mg2Si phase)

    圖  7  Zn/MgZn2/Al三元共晶組織[27]

    Figure  7.  Zn/MgZn2/Al ternary eutectic microstructure[27]

    圖  8  Factsage 7.2計算的Zn-Al-Mg三元相圖

    Figure  8.  Zn-Al-Mg ternary phase diagram calculated by Factsage-7.2

    圖  9  鍍層腐蝕產物變化過程[27, 31]

    Figure  9.  Corrosion product changing process[27, 31]

    圖  10  切邊腐蝕機理[15].(a)初期腐蝕;(b)腐蝕產物遷移;(c)穩定階段

    Figure  10.  Corrosion mechanism of cut edge[15]: (a) initial corrosion; (b) corrosion product migration; (c) stable state

    表  1  鋅鋁鎂金屬間化合物層生長動力學方程

    Table  1.   Growth kinetic equation of Zn-Al-Mg IMC layer

    熔池 實驗溫度/℃ 金屬間化合物生長動力學方程 文獻來源
    11Al-3Mg-Zn 510 Δx=3.1766·t0.6715 [4]
    11Al-3Mg-0.2Si-Zn 510 Δx=0.1221·t0.5384 [4]
    11Al-3Mg-0.2Si-Zn 480~650 $ \Delta x = 0.25 \cdot {{\rm{e}}^{ - \frac{{101}}{{RT}}}} \cdot {t^{0.5}} $ [5]
    6Al-xMg-Zn (x=0, 1, 2, 3, 4, 5) 420~540 [24]
    6Al-3Mg-Zn Δx=1.2716·t0.6035 [23]
    11Al-1.5Mg-Zn 510 Δx=1.8699·t0.8109 [25]
    11Al-4.5Mg-Zn 510 Δx=3.0554·t0.6709 [25]
    下載: 導出CSV

    表  2  鋅鋁鎂鍍層組織及代表產品牌號

    Table  2.   Coating structures and representative products

    鋅鋁鎂類型 ωAl/% ωMg/% 鍍層組織類型[16]
    “低鋁” 1~5 1~2 初生Zn、Zn/MgZn2共晶組織、Zn/MgZn2/Al共晶組織
    “中鋁” 6~13 3 初生Al、Zn/MgZn2共晶組織、Zn/MgZn2/Al共晶組織
    “高鋁” 47~57 2 富Al枝晶、枝晶間富Zn相、Mg2Si相、MgZn2
    下載: 導出CSV

    表  3  鍍層腐蝕產物類型與組成[27, 31]

    Table  3.   Type and composition of the corrosion products[27, 31]

    名稱 符號 化學式
    雙層氫氧化物 LDH M(Ⅱ)xM(Ⅲ)y(A-)m(OH-)n·zH2O
    M(Ⅱ)=Zn2+, Mg2+; M(Ⅲ)=Al3+ A-=CO32-, Cl-, SO42-
    羥基氯化鋅 ZHC Zn5(OH)8Cl2·H2O
    羥基硫酸鋅 ZHS Zn4(OH)6SO4·nH2O,n=3~5
    堿式碳酸鋅 HZ Zn5(OH)6(CO3)2·H2O
    氧化鋅 ZnO ZnO
    氫氧化鋅 Zn(OH)2 Zn(OH)2
    氫氧化鎂 Mg(OH)2 Mg(OH)2
    氫氧化鋁 Al(OH)3 Al(OH)3
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Marder A R. The metallurgy of zinc-coated steel. Prog Mater Sci, 2000, 45(3): 191 doi: 10.1016/S0079-6425(98)00006-1
    [2] Li F, Lü J S, Yang H G, et al. Research on ZnAlMg coated steel sheet. Steel Roll, 2013, 30(2): 45 doi: 10.3969/j.issn.1003-9996.2013.02.013

    李鋒, 呂家舜, 楊洪剛, 等. 鋅鋁鎂鍍層鋼板的研究進展. 軋鋼, 2013, 30(2): 45 doi: 10.3969/j.issn.1003-9996.2013.02.013
    [3] Zhou Y J, Dai Y H, Jiang G R. Analysis of global patents technology on Zn-Al-Mg coated steel sheets in recent 20 years. Iron Steel, 2016, 51(11): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201611002.htm

    周誼軍, 代云紅, 蔣光銳. 近20年全球鋅鋁鎂鍍層鋼板技術專利分析. 鋼鐵, 2016, 51(11): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201611002.htm
    [4] Li K L, Liu Y, Tu H, et al. Effect of Si on the growth of Fe-Al intermetallic layer in Zn-11%Al-3%Mg coating. Surf Coat Technol, 2016, 306: 390 doi: 10.1016/j.surfcoat.2016.05.033
    [5] Wang J H, Ma K, Peng H P, et al. Study on Fe-Al layers of Fe/(Zn-11% Al-3% Mg-0.2% Si) solid-liquid diffusion couples. Mater Manuf Processes, 2017, 32(11): 1290 doi: 10.1080/10426914.2017.1328117
    [6] Yao C Z, Tay S L, Zhu T P, et al. Effects of Mg content on microstructure and electrochemical properties of Zn-Al-Mg alloys. J Alloys Compd, 2015, 645: 131 doi: 10.1016/j.jallcom.2015.05.010
    [7] Wang Y B, Zeng J M. Effects of manganese addition on microstructures and corrosion behavior of hot-dip zinc coatings of hot-rolled steels. Surf Coat Technol, 2014, 245: 55 doi: 10.1016/j.surfcoat.2014.02.040
    [8] Pistofidis N, Vourlias G, Konidaris S, et al. Microstructure of zinc hot-dip galvanized coatings used for corrosion protection. Mater Lett, 2006, 60(6): 786 doi: 10.1016/j.matlet.2005.10.013
    [9] Duchoslav J, Arndt M, Steinberger R, et al. Nanoscopic view on the initial stages of corrosion of hot dip galvanized Zn-Mg-Al coatings. Corros Sci, 2014, 83: 327 doi: 10.1016/j.corsci.2014.02.027
    [10] Schürz S, Luckeneder G H, Fleischanderl M, et al. Chemistry of corrosion products on Zn-Al-Mg alloy coated steel. Corros Sci, 2010, 52(10): 3271 doi: 10.1016/j.corsci.2010.05.044
    [11] Volovitch P, Allely C, Ogle K. Understanding corrosion via corrosion product characterization: Ⅰ. Case study of the role of Mg alloying in Zn-Mg coating on steel. Corros Sci, 2009, 51(6): 1251 doi: 10.1016/j.corsci.2009.03.005
    [12] Volovitch P, Vu T N, Allély C, et al. Understanding corrosion via corrosion product characterization: Ⅱ. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel. Corros Sci, 2011, 53(8): 2437 doi: 10.1016/j.corsci.2011.03.016
    [13] Yuan X H, Lin Y, Zhang Q F. Cut-edge protection performance and corrosion resistance mechanisms of galvanized Zn-Al-Mg alloy coating. Chin J Nonferrous Met, 2015, 25(9): 2453 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201509018.htm

    袁訓華, 林源, 張啟富. 熱鍍鋅鋁鎂鍍層的切邊保護性能和耐腐蝕機理. 中國有色金屬學報, 2015, 25(9): 2453 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201509018.htm
    [14] Ueda K, Takahashi A, Kubo Y. Investigation of corrosion resistance of pre-painted Zn-11% Al-3% Mg-0.2% Si alloy coated steel sheet through outdoor exposure test in Okinawa. La Metall Ital, 2012(2): 13 http://www.researchgate.net/publication/279944140_Investigation_of_corrosion_resistance_of_pre-painted_Zn-11Al-3Mg-0.2Si_alloy_coated_steel_sheet_through_outdoor_exposure_test_in_Okinawa
    [15] Thébault F, Vuillemin B, Oltra R, et al. Investigation of self-healing mechanism on galvanized steels cut edges by coupling SVET and numerical modeling. Electrochim Acta, 2008, 53(16): 5226 doi: 10.1016/j.electacta.2008.02.066
    [16] Xie Y X, Jin X Y, Wang L. Development and application of hot-dip galvanized zinc-aluminum-magnesium coating. J Iron Steel Res, 2017, 29(3): 167 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201703001.htm

    謝英秀, 金鑫焱, 王利. 熱浸鍍鋅鋁鎂鍍層開發及應用進展. 鋼鐵研究學報, 2017, 29(3): 167 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201703001.htm
    [17] Li S W. Study on Hot-Dip Technology and Corrosion Mechanism of Zn-Al-Mg-Si-RE Alloy[Dissertation]. Shenyang: Northeastern University, 2010

    李世偉. Zn-Al-Mg-Si-RE合金熱浸鍍工藝及其腐蝕機理的研究[學位論文]. 沈陽: 東北大學, 2010
    [18] Li S W. Study on RE, Mg and Si in the modification of ZAM and Galvalume Coatings[Dissertation]. Shenyang: Northeastern University, 2013

    李世偉. RE、Mg、Si對ZAM和Galvalume鍍層的改性研究[學位論文]. 沈陽: 東北大學, 2013
    [19] Hashimoto S, Nakazawa M. Zn-Al-Mg Coated Steel Sheet and Method of Producing Zn-Al-Mg Coated Steel Sheet: US Patent, 15/554, 451. 2018-8-23
    [20] Su X P, Zhou J, Wang J H, et al. Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths. Appl Surf Sci, 2017, 396: 154 doi: 10.1016/j.apsusc.2016.11.043
    [21] Zhang Y. Study on Smelting and Corrosion Mechanism of Zn-Al-Mg Alloys[Dissertation]. Beijing: China University of Mining and Technology, 2017

    張永. Zn-Al-Mg合金的熔煉及其腐蝕機理研究[學位論文]. 北京: 中國礦業大學, 2017
    [22] Giorgi M L, Guillot J B, Nicolle R. Theoretical model of the interfacial reactions between solid iron and liquid zinc-aluminium alloy. J Mater Sci, 2005, 40(9-10): 2263 doi: 10.1007/s10853-005-1944-5
    [23] Li K L. Study on the Effect of Alloy Elements on the Zn-11%Al Coating and Solidification Microstructure[Dissertation]. Changzhou: Changzhou University, 2016

    李凱良. 合金元素對Zn-11%Al鍍層及凝固組織影響的研究[學位論文]. 常州: 常州大學, 2016
    [24] Liang L, Liu Y L, Liu Y, et al. Effect of Mg and temperature on Fe-Al alloy layer in Fe/(Zn-6% Al-x% Mg) solid-liquid diffusion couples. Surf Rev Lett, 2017, 24(Suppl 1): 1850010 doi: 10.1142/S0218625X18500105
    [25] Li K L, Wu C J, Peng H P, et al. Effect of Mg on the solidification structure and growth of the intermetallic layer of a Zn-11%Al alloy coating. Chin J Eng, 2016, 38(8): 1123 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201608011.htm

    李凱良, 吳長軍, 彭浩平, 等. Mg對Zn-11%Al合金鍍層凝固組織及合金層生長的影響. 工程科學學報, 2016, 38(8): 1123 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201608011.htm
    [26] Li S W, Gao B, Tu G F, et al. Effects of magnesium on the microstructure and corrosion resistance of Zn-55Al-1.6Si coating. Constr Build Mater, 2014, 71: 124 doi: 10.1016/j.conbuildmat.2014.08.023
    [27] Azevedo M S, Allély C, Ogle K, et al. Corrosion mechanisms of Zn (Mg, Al) coated steel: 2. the effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes. Corros Sci, 2015, 90: 482 doi: 10.1016/j.corsci.2014.07.042
    [28] Honda K, Yamada W, Ushioda K. Solidification structure of the coating layer on hot-dip Zn-11% Al-3% Mg-0.2% Si-coated steel sheet. Mater Trans, 2008, 49(6): 1395 doi: 10.2320/matertrans.MRA2008009
    [29] Yamada W, Tanaka K, Ushioda K, et al. Solidification structure of coating layer in hot-dip Zn-11% Al-3% Mg-0.2% Si-coated steel sheet and phase diagram of the system. Nippon Steel Tech Rep, 2013, 102: 37 http://ci.nii.ac.jp/naid/40019264419
    [30] De Bruycker E, Zermout Z, De Cooman B C. Zn-Al-Mg coatings: thermodynamic analysis and microstructure related properties. Mater Sci Forum, 2007, 539-5423: 1276
    [31] Azevedo M S, Allély C, Ogle K, et al. Corrosion mechanisms of Zn (Mg, Al) coated steel in accelerated tests and natural exposure: 1. the role of electrolyte composition in the nature of corrosion products and relative corrosion rate. Corros Sci, 2015, 90: 472
    [32] Lü J S, Li F, Yang H G, et al. Research on coating microstructure and corrosion behavior of galvanized Zn-Al-Mg coated steel sheet. J Mater Eng, 2012(10): 89 doi: 10.3969/j.issn.1001-4381.2012.10.019

    呂家舜, 李鋒, 楊洪剛, 等. 熱浸鍍鋅鋁鎂鋼板鍍層組織及腐蝕性能研究. 材料工程, 2012(10): 89 doi: 10.3969/j.issn.1001-4381.2012.10.019
    [33] Oh M S, Kim S H, Kim J S, et al. Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure. Met Mater Int, 2016, 22(1): 26 doi: 10.1007/s12540-015-5411-9
    [34] Krieg R, Rohwerder M, Evers S, et al. Cathodic self-healing at cut-edges: the effect of Zn2+ and Mg2+ ions. Corros Sci, 2012, 65: 119 doi: 10.1016/j.corsci.2012.08.008
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  1542
  • HTML全文瀏覽量:  634
  • PDF下載量:  122
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-01-09
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回