<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

MOF晶體薄膜材料的制備及應用

王丹 王正幫 王敬鋒 魯雄剛 周忠福

王丹, 王正幫, 王敬鋒, 魯雄剛, 周忠福. MOF晶體薄膜材料的制備及應用[J]. 工程科學學報, 2019, 41(3): 292-306. doi: 10.13374/j.issn2095-9389.2019.03.002
引用本文: 王丹, 王正幫, 王敬鋒, 魯雄剛, 周忠福. MOF晶體薄膜材料的制備及應用[J]. 工程科學學報, 2019, 41(3): 292-306. doi: 10.13374/j.issn2095-9389.2019.03.002
WANG Dan, WANG Zheng-bang, WANG Jing-feng, LU Xiong-gang, ZHOU Zhong-fu. Fabrication methods and applications of metal-organic framework thin films[J]. Chinese Journal of Engineering, 2019, 41(3): 292-306. doi: 10.13374/j.issn2095-9389.2019.03.002
Citation: WANG Dan, WANG Zheng-bang, WANG Jing-feng, LU Xiong-gang, ZHOU Zhong-fu. Fabrication methods and applications of metal-organic framework thin films[J]. Chinese Journal of Engineering, 2019, 41(3): 292-306. doi: 10.13374/j.issn2095-9389.2019.03.002

MOF晶體薄膜材料的制備及應用

doi: 10.13374/j.issn2095-9389.2019.03.002
基金項目: 

自然科學基金資助項目 51371112

國家重點基礎研究發展計劃資助項目 2014CB643403

詳細信息
    通訊作者:

    周忠福, E-mail: z.zhou@shu.edu.cn

  • 中圖分類號: TG142.71

Fabrication methods and applications of metal-organic framework thin films

More Information
  • 摘要: 作為納米技術領域的一種新材料, 金屬-有機骨架(metal-organic framework, MOF)薄膜材料(也稱為SURMOFs)獲得了越來越多研究者的關注.多種合成方法的不斷提出, 為大量合成膜厚度、均勻性、形態、甚至維度均可控的MOF薄膜材料提供了可能性, 并為薄膜材料在更多領域中的應用提供了機會.本文首先介紹了MOF薄膜材料基于液相或真空的各種合成方法及其適用范圍, 其中, 獲得高質量薄膜的最有效方法之一是在基底材料上沉積自組裝單層(SAMs), 進而誘導MOF薄膜的成核及生長.其次, 總結了近年來MOF薄膜材料在分離、催化、傳感等領域的研究進展, 以及為滿足環境可持續發展和對清潔能源的需求, 新發展起來的在光催化、儲能、光伏以及制備各種電子器件領域的應用.在此基礎上, 討論了限制MOF薄膜實際應用的因素(例如薄膜生長機制需要更深入的研究、薄膜質量及薄膜熱電性能等有待進一步提高等), 對相關領域未來的研究方向進行了展望, 以期為MOF薄膜材料進一步的研究發展提供理論參考.

     

  • 圖  1  熱壓法(HoP) 制備MOF涂層過程的示意圖

    Figure  1.  Schematic representation of hot-pressing (HoP) method for MOF films fabrication

    圖  2  在SAM官能化基底上生長SURMOF薄膜的方法示意圖. (a) 液相外延法; (b) 浸漬法; (c) 噴涂法

    Figure  2.  Schematic illustrations of different approaches to fabricate SURMOF thin films on SAM-functionalized substrates: (a) LPE method; (b) dip-ping method; (c) spray method

    圖  3  界面合成法制備MOF薄膜的過程示意圖. (a) 液-液界面法; (b) 氣--液界面法; (c) LB膜技術

    Figure  3.  Sketch of preparing MOF thin films by interfacial synthesis: (a) liquid-liquid interfacial synthesis; (b) air-liquid interfacial synthesis; (c) Langmuir--Blodgett (LB) technology

    圖  4  自下而上的自組裝法制備MOF薄膜的過程示意圖[46]

    Figure  4.  BMA fabrication of NAFS-1 films by combining a layer-bylayer growth technique with the LB method[46]

    圖  5  基于超薄二維納米片的MOF薄膜制備過程示意圖. (a) 合成二維Co-TCPP (Fe) 納米片; (b) 基于二維納米片的MOF薄膜的組裝過程

    Figure  5.  Schematic illustrations of preparing ultra-thin 2D nanosheetbased MOF thin films: (a) surfactant-assisted synthesis of 2D CoTCPP (Fe) nanosheets; (b) assembly process of 2D nanosheet-based MOF thin films

    圖  6  電化學方法制備MOF薄膜的示意圖. (a) 陽極沉積; (b) 電泳沉積; (c) 陰極沉積

    Figure  6.  Schematic illustration of the electrochemical fabrication of MOF thin films: (a) anodic deposition; (b) electrophoretic deposition; (c) ca-thodic deposition

    圖  7  原子層沉積法制備MOF薄膜的過程示意圖

    Figure  7.  ALD process of MOF thin films fabrication

    圖  8  X射線衍射方法表征二維薄膜材料的示意圖[60]. (a) 面外模式(out-of-plane) X射線衍射方法獲得的晶面衍射圖譜; (b) 平面模式(in-plane) X射線衍射方法獲得的晶面衍射圖譜; (c) Fe (pz) 2[Pt (CN) 4]薄膜

    Figure  8.  X-ray diffraction characterization of 2D thin films[60]: (a) patterns obtained by out-of-plane XRD; (b) patterns obtained by in-plane XRD; (c) Fe (pz) 2[Pt (CN) 4] (pz: pyrazine) thin films

    圖  9  Ni-MOF/Ni/Ni O/C納米復合膜用于人血清葡萄糖檢測[87]. (a) 檢測過程示意圖; (b) 不同材料固載的GCE在Na OH (0.1 mol·L-1) 和葡萄糖(0.4 mmol·L-1) 混合溶液中的循環伏安(CV) 曲線

    Figure  9.  Ni-MOF/Ni/Ni O/C nanocomposite-modified GCE applied for glucose detection in human serum sample[87]: (a) schematic of de-tection process; (b) cyclic voltammetry curves of GCEs immobilized with different materials in Na OH (0.1 mol·L-1) with 0.4 mmol·L-1glucose

    圖  10  MOF材料在防腐中的應用[99]. (a) 制備ZIF-8涂層過程的示意圖; (b) 不同基底材料的直流極化曲線

    Figure  10.  Application of MOF in anticorrosion[99]: (a) schematic il-lustration of ZIF-8 coatings synthesis; (b) direct-current (DC) polar-ization curves for different substrates

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li B, Wen H M, Cui Y J, et al. Emerging multifunctional metalorganic framework materials. Adv Mater, 2016, 28(40): 8819 doi: 10.1002/adma.201601133
    [2] Kaneti Y V, Dutta S, Hossain M S A, et al. Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Adv Mater, 2017, 29(38): ArtNo. 1700213-1 doi: 10.1002/adma.201700213
    [3] Loiseau T, Volkringer C, Haouas M, et al. Crystal chemistry of aluminium carboxylates: from molecular species towards porous infinite three-dimensional networks. C R Chim, 2015, 18(12): 1350 doi: 10.1016/j.crci.2015.08.006
    [4] Fu J R. Fabrication and Gas Separation Properties of MOF Membrane and COF Membrane and the COF/MOF Composite Membrane.[Dissertation]. Changchun: Jilin University, 2016

    付靜茹. MOF膜和COF膜以及COF/MOF復合膜的制備以及氣體分離性質的研究[學位論文]. 長春: 吉林大學, 2016
    [5] Li Y S, Yang W S. Molecular sieve membranes: from 3D zeolites to 2D MOFs. Chin J Catal, 2015, 36(5): 692 doi: 10.1016/S1872-2067(15)60838-5
    [6] Andres M A, Benzaqui M, Serre C, et al. Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance. J Colloid Interface Sci, 2018, 519: 88 doi: 10.1016/j.jcis.2018.02.058
    [7] Zhang J, Xia T F, Zhao D, et al. In situ secondary growth of Eu (Ⅲ)-organic framework film for fluorescence sensing of sulfur dioxide. Sens Actuators B, 2018, 260: 63 doi: 10.1016/j.snb.2017.12.187
    [8] Rubio-Gimenez V, Galbiati M, Castells-Gil J, et al. Bottom-up fabrication of semiconductive metal-organic framework ultrathin films. Adv Mater, 2018, 30(10): 1704291 doi: 10.1002/adma.201704291
    [9] Shete M, Kumar P, Bachman J E, et al. On the direct synthesis of Cu(BDC) MOF nanosheets and their performance in mixed matrix membranes. J Membr Sci, 2018, 549: 312 doi: 10.1016/j.memsci.2017.12.002
    [10] Bétard A, Fischer R A. Metal-organic framework thin films: from fundamentals to applications. Chem Rev, 2012, 112(2): 1055 doi: 10.1021/cr200167v
    [11] Sakaida S, Otsubo K, Sakata O, et al. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat Chem, 2016, 8(4): 377 doi: 10.1038/nchem.2469
    [12] Edler K J, Yang B. Formation of mesostructured thin films at the air-liquid interface. Chem Soc Rev, 2013, 42(9): 3765 doi: 10.1039/C2CS35300H
    [13] Genesio G, Maynadie J, Carboni M, et al. Recent status on MOF thin films on transparent conductive oxides substrates (ITO or FTO). New J Chem, 2018, 42(4): 2351 doi: 10.1039/C7NJ03171H
    [14] He Y R, Tang Y P, Ma D C, et al. UiO-66 incorporated thinfilm nanocomposite membranes for efficient selenium and arsenic removal. J Membr Sci, 2017, 541: 262 doi: 10.1016/j.memsci.2017.06.061
    [15] Chernikova V, Shekhah O, Eddaoudi M. Advanced fabrication method for the preparation of MOF thin films: liquid-phase epitaxy approach meets spin coating method. ACS Appl Mater Interfaces, 2016, 8(31): 20459 doi: 10.1021/acsami.6b04701
    [16] Chen Y F, Li S Q, Pei X K, et al. A solvent-free hot-pressing method for preparing metal-organic-framework coatings. Angew Chem Int Ed, 2016, 55(10): 3419 doi: 10.1002/anie.201511063
    [17] Li W J, Gao S Y, Liu T F, et al. In situ growth of metal-organic framework thin films with gas sensing and molecule storage properties. Langmuir, 2013, 29(27): 8657 doi: 10.1021/la402012d
    [18] Shekhah O, Fu L L, Sougrat R, et al. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: mesoporous silica foam as a first case study. Chem Commun, 2012, 48(93): 11434 doi: 10.1039/c2cc36233c
    [19] Sun Y X, Yang F, Wei Q, et al. Oriented nano-microstructureassisted controllable fabrication of metal-organic framework membranes on nickel foam. Adv Mater, 2016, 28(12): 2374 doi: 10.1002/adma.201505437
    [20] Yao M S, Tang W X, Wang G E, et al. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv Mater, 2016, 28(26): 5229 doi: 10.1002/adma.201506457
    [21] Bao T, Zhang J, Zhang W P, et al. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography. J Chromatogr A, 2015, 1381: 239 doi: 10.1016/j.chroma.2015.01.005
    [22] Dou Z S, Cai J F, Cui Y J, et al. Preparation and gas separation properties of metal organic framework membranes. Z Anorg Allg Chem, 2015, 641(5): 792 doi: 10.1002/zaac.201400574
    [23] Hromadka J, Tokay B, Correia R, et al. Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8. Sens Actuators B, 2018, 260: 685 doi: 10.1016/j.snb.2018.01.015
    [24] Toyao T, Styles M J, Yago T, et al. Fe3O4@HKUST-1 and Pd/Fe3O4@HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic. CrystEngComm, 2017, 19(29): 4201 doi: 10.1039/C7CE00390K
    [25] Lee D T, Zhao J J, Oldham C J, et al. UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl Mater Interfaces, 2017, 9(51): 44847 doi: 10.1021/acsami.7b15397
    [26] Qin X, Sun Y X, Wang N X, et al. Surface modifications for preparation of MOF thin films. Chem Ind Eng Prog, 2017, 36(4): 1306 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201704021.htm

    秦茜, 孫玉繡, 王乃鑫, 等. 表面修飾在MOF薄膜制備中的應用. 化工進展, 2017, 36(4): 1306 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201704021.htm
    [27] Janghouri M, Hosseini H. Water-soluble metal-organic framework hybrid electron injection layer for organic light-emitting devices. J Inorg Organomet Polym Mater, 2017, 27(6): 1800 doi: 10.1007/s10904-017-0644-3
    [28] Hou J W, Sutrisna P D, Zhang Y T, et al. Formation of ultrathin, continuous metal-organic framework membranes on flexible polymer substrates. Angew Chem Int Ed, 2016, 55(12): 3947 doi: 10.1002/anie.201511340
    [29] Wang N Y, Liu Y, Qiao Z W, et al. Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity. J Mater Chem A, 2015, 3(8): 4722 doi: 10.1039/C4TA06763K
    [30] Liu J X, Shekhah O, Stammer X, et al. Deposition of metal-organic frameworks by liquid-phase epitaxy: the influence of substrate functional group density on film orientation. Materials, 2012, 5(9): 1581 doi: 10.3390/ma5091581
    [31] Virmani E, Rotter J M, Mahringer A, et al. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted conversion. J Am Chem Soc, 2018, 140(14): 4812 doi: 10.1021/jacs.7b08174
    [32] Zhuang J L, Terfort A, W?ll C. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: a review. Coord Chem Rev, 2016, 307: 391 doi: 10.1016/j.ccr.2015.09.013
    [33] Guo Y, Mao Y Y, Hu P, et al. Self-confined synthesis of HKUST-1 membranes from CuO nanosheets at room temperature. Chemistry Select, 2016, 1(1): 108 doi: 10.1002/slct.201500010
    [34] Liu Y, Pan J H, Wang N Y, et al. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. Angew Chem Int Ed, 2015, 127(10): 3071 doi: 10.1002/ange.201411550
    [35] Brower L J, Gentry L K, Napier A L, et al. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth. Beilstein J Nanotechnol, 2017, 8: 2307 doi: 10.3762/bjnano.8.230
    [36] Ismail F M, Abdellah A M, Ali P A, et al. Bilayer sandwichlike membranes of metal organic frameworks-electrospun polymeric nanofibers via SiO 2 nanoparticles seeding. Mater Today Commun, 2017, 12: 119 doi: 10.1016/j.mtcomm.2017.08.001
    [37] Liu J X, W?ll C. Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges. Chem Soc Rev, 2017, 46(19): 5730 doi: 10.1039/C7CS00315C
    [38] Horiuchi Y, Toyao T, Miyahara K, et al. Visible-light-driven photocatalytic water oxidation catalysed by iron-based metal-organic frameworks. Chem Commun, 2016, 52(29): 5190 doi: 10.1039/C6CC00730A
    [39] Fan L L, Xue M, Kang Z X, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. J Mater Chem, 2012, 22(48): 25272 doi: 10.1039/c2jm35401b
    [40] Shekhah O, Wang H, Kowarik S, et al. Step-by-step route for the synthesis of metal-organic frameworks. J Am Chem Soc, 2007, 129(49): 15118 doi: 10.1021/ja076210u
    [41] Hurrle S, Friebe S, Wohlgemuth J, et al. Sprayable, large-area metal-organic framework films and membranes of varying thickness. Chem Eur J, 2017, 23(10): 2294 doi: 10.1002/chem.201606056
    [42] Gliemann H, W?ll C. Epitaxially grown metal-organic frameworks. Mater Today, 2012, 15(3): 110 doi: 10.1016/S1369-7021(12)70046-9
    [43] Ameloot R, Vermoortele F, Vanhove W, et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat Chem, 2011, 3(5): 382 doi: 10.1038/nchem.1026
    [44] Makiura R, Konovalov O. Interfacial growth of large-area singlelayer metal-organic framework nanosheets. Sci Rep, 2013, 3: ArtNo. 2506-1 doi: 10.1038/srep02506
    [45] Gu P, Qian L N, Yan Z D, et al. Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonalclose-packed dielectric microspheres. Opt Commun, 2018, 419: 103 doi: 10.1016/j.optcom.2018.03.016
    [46] Otsubo K, Kitagawa H. Metal-organic framework thin films with well-controlled growth directions confirmed by x-ray study. APL Mater, 2014, 2(12): 124105 doi: 10.1063/1.4899295
    [47] Makiura R, Motoyama S, Umemura Y, et al. Surface nano-architecture of a metal-organic framework. Nat Mater, 2010, 9(7): 565 doi: 10.1038/nmat2769
    [48] Wang Y X, Zhao M T, Ping J F, et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv Mater, 2016, 28(21): 4149 doi: 10.1002/adma.201600108
    [49] Zhao Y B, Kornienko N, Liu Z, et al. Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals. J Am Chem Soc, 2015, 137(6): 2199 doi: 10.1021/ja512951e
    [50] Müller U, Puetter H, Hesse M, et al. Method for Electrochemical Production of A Crystalline Porous Metal Organic Skeleton Material: US Patent, 7968739B2.2011-6-28
    [51] Li W J, Liu J, Sun Z H, et al. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat Commun, 2016, 7: 11830 doi: 10.1038/ncomms11830
    [52] Feng J F, Yang X, Gao S Y, et al. Facile and rapid growth of nanostructured Ln-BTC metal-organic framework films by electrophoretic deposition for explosives sensing in gas and Cr3+ detection in solution. Langmuir, 2017, 33(50): 14238 doi: 10.1021/acs.langmuir.7b03170
    [53] Li M Y, Dinca M. Reductive electrosynthesis of crystalline metal-organic frameworks. J Am Chem Soc, 2011, 133(33): 12926 doi: 10.1021/ja2041546
    [54] Stassen I, Styles M, Grenci G, et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater, 2016, 15(3): 304 doi: 10.1038/nmat4509
    [55] Ahvenniemi E, Karppinen M. In situ atomic/molecular layer-bylayer deposition of inorganic-organic coordination network thin films from gaseous precursors. Chem Mater, 2016, 28(17): 6260 doi: 10.1021/acs.chemmater.6b02496
    [56] Lemaire P C, Zhao J J, Williams P S, et al. Copper benzenetricarboxylate metal-organic framework nucleation mechanisms on metal oxide powders and thin films formed by atomic layer deposition. ACS Appl Mater Interfaces, 2016, 8(14): 9514 doi: 10.1021/acsami.6b01195
    [57] Delen G, Ristanovi? Z, Mandemaker L D B, et al. Mechanistic insights into growth of surface-mounted metal-organic framework films resolved by infrared (nano-) spectroscopy. Chem Eur J, 2018, 24(1): 187 doi: 10.1002/chem.201704190
    [58] Worrall S D, Bissett M A, Hill P I, et al. Metal-organic framework templated electrodeposition of functional gold nanostructures. Electrochim Acta, 2016, 222: 361 doi: 10.1016/j.electacta.2016.10.187
    [59] Liu J X, Redel E, Walheim S, et al. Monolithic high performance surface anchored metal-organic framework Bragg reflector for optical sensing. Chem Mater, 2015, 27(6): 1991 doi: 10.1021/cm503908g
    [60] Otsubo K, Haraguchi T, Sakata O, et al. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction. J Am Chem Soc, 2012, 134(23): 9605 doi: 10.1021/ja304361v
    [61] Haraguchi T, Otsubo K, Sakata O, et al. Remarkable lattice shrinkage in highly oriented crystalline three-dimensional metalorganic framework thin films. Inorg Chem, 2015, 54(24): 11593 doi: 10.1021/acs.inorgchem.5b02207
    [62] Zhu Y H, Ciston J, Zheng B, et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat Mater, 2017, 16(5): 532 doi: 10.1038/nmat4852
    [63] Cliffe M J, Wan W, Zou X D, et al. Correlated defect nanoregions in a metal-organic framework. Nat Commun, 2014, 5: 4176 doi: 10.1038/ncomms5176
    [64] Kozachuk O, Meilikhov M, Yusenko K, et al. A solid-solution approach to mixed-metal metal-organic frameworks-detailed characterization of local structures, defects and breathing behaviour of Al/V frameworks. Eur J Inorg Chem, 2013, 2013(26): 4546 doi: 10.1002/ejic.201300591
    [65] St Petkov P, Vayssilov G N, Liu J X, et al. Defects in MOFs: a thorough characterization. Chem Phys Chem, 2012, 13(8): 2025 doi: 10.1002/cphc.201200222
    [66] Bennett T D, Todorova T K, Baxter E F, et al. Connecting defects and amorphization in UiO-66 and MIL-140 metal-organic frameworks: a combined experimental and computational study. Phys Chem Chem Phys, 2016, 18(3): 2192 doi: 10.1039/C5CP06798G
    [67] Feyand M, Mugnaioli E, Vermoortele F, et al. Automated diffraction tomography for the structure elucidation of twinned, submicrometer crystals of a highly porous, catalytically active bismuth metal-organic framework. Angew Chem Int Ed, 2012, 124(41): 10519 doi: 10.1002/ange.201204963
    [68] Vermoortele F, Bueken B, Le Bars G, et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). J Am Chem Soc, 2013, 135(31): 11465 doi: 10.1021/ja405078u
    [69] Adatoz E, Avci A K, Keskin S. Opportunities and challenges of MOF-based membranes in gas separations. Sep Purif Technol, 2015, 152: 207 doi: 10.1016/j.seppur.2015.08.020
    [70] Huang K, Liu S N, Li Q Q, et al. Preparation of novel metalcarboxylate system MOF membrane for gas separation. Sep Purif Technol, 2013, 119: 94 doi: 10.1016/j.seppur.2013.09.008
    [71] Hu Y X, Dong X L, Nan J P, et al. Metal-organic framework membranes fabricated via reactive seeding. Chem Commun, 2011, 47(2): 737 doi: 10.1039/C0CC03927F
    [72] Münch A S, Seidel J, Obst A, et al. High-separation performance of chromatographic capillaries coated with MOF-5 by the controlled SBU approach. Chem Eur J, 2011, 17(39): 10958 doi: 10.1002/chem.201100642
    [73] Ramos-Fernandez E V, Garcia-Domingos M, Juan-Alcaniz J, et al. MOFs meet monoliths: Hierarchical structuring metal organic framework catalysts. Appl Catal A, 2011, 391(1-2): 261 doi: 10.1016/j.apcata.2010.05.019
    [74] Zhang T Y, Liu W X, Meng G, et al. Construction of hierarchical copper-based metal-organic framework nanoarrays as functional structured catalysts. Chem Cat Chem, 2017, 9(10): 1771 doi: 10.1002/cctc.201700060
    [75] Maina J W, Schutz J A, Grundy L, et al. Inorganic nanoparticles/metal organic framework hybrid membrane reactors for efficient photocatalytic conversion of CO2. ACS Appl Mater Interfaces, 2017, 9(40): 35010 doi: 10.1021/acsami.7b11150
    [76] Lin S Y, Pineda-Galvan Y, Maza W A, et al. Electrochemical water oxidation by a catalyst-modified metal-organic framework thin film. Chem Sus Chem, 2017, 10(3): 514 doi: 10.1002/cssc.201601181
    [77] Gong Y N, Ouyang T, He C T, et al. Photoinduced water oxidation by an organic ligand incorporated into the framework of a stable metal-organic framework. Chem Sci, 2016, 7(2): 1070 doi: 10.1039/C5SC02679B
    [78] Usov P M, Ahrenholtz S R, Maza W A, et al. Cooperative electrochemical water oxidation by Zr nodes and Ni-porphyrin linkers of a PCN-224 MOF thin film. J Mater Chem A, 2016, 4(43): 16818 doi: 10.1039/C6TA05877A
    [79] Johnson B A, Bhunia A, Ott S. Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal-organic framework thin film. Dalton Trans, 2017, 46(5): 1382 doi: 10.1039/C6DT03718F
    [80] Vaddipalli S R, Sanivarapu S R, Vengatesan S, et al. Heterostructured Au NPs/CdS/LaBTC MOFs photoanode for efficient photoelectrochemical water splitting: Stability enhancement via CdSe QDs to 2D-CdS nanosheets transformation. ACS Appl Mater Interfaces, 2016, 8(35): 23049 doi: 10.1021/acsami.6b06851
    [81] Zhao S L, Wang Y, Dong J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy, 2016, 1: 16184 doi: 10.1038/nenergy.2016.184
    [82] Fan L L. Preparation and Application of Zeolite and Metal-Organic Framework Membranes[Dissertation]. Changchun: Jilin University, 2014

    范黎黎. 沸石分子篩膜和金屬-有機骨架膜的制備和應用[學位論文]. 長春: 吉林大學, 2014
    [83] Ye L, Liu J X, Gao Y, et al. Highly oriented MOF thin filmbased electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency. J Mater Chem A, 2016, 4(40): 15320 doi: 10.1039/C6TA04801C
    [84] Kornienko N, Zhao Y B, Kley C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc, 2015, 137(44): 14129 doi: 10.1021/jacs.5b08212
    [85] Allendorf M D, Houk R J, Andruszkiewicz L, et al. Stress-induced chemical detection using flexible metal-organic frameworks. J Am Chem Soc, 2008, 130(44): 14404 doi: 10.1021/ja805235k
    [86] Hromadka J, Tokay B, Correia R, et al. Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1. Sens Actuators B, 2018, 255: 2483 doi: 10.1016/j.snb.2017.09.041
    [87] Shu Y, Yan Y, Chen J Y, et al. Ni and NiO nanoparticles decorated metal-organic framework nanosheets: Facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl Mater Interfaces, 2017, 9(27): 22342 doi: 10.1021/acsami.7b07501
    [88] Liu J, Sun F X, Zhang F, et al. In situ growth of continuous thin metal-organic framework film for capacitive humidity sensing. J Mater Chem, 2011, 21(11): 3775 doi: 10.1039/c0jm03123b
    [89] Aubrey M L, Long J R. A dual-ion battery cathode via oxidative insertion of anions in a metal-organic framework. J Am Chem Soc, 2015, 137(42): 13594 doi: 10.1021/jacs.5b08022
    [90] Jiao Y, Pei J, Yan C S, et al. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices. J Mater Chem A, 2016, 4(34): 13344 doi: 10.1039/C6TA05384J
    [91] Li B, Liu J, Nie Z M, et al. Metal-organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries. Nano Lett, 2016, 16(7): 4335 doi: 10.1021/acs.nanolett.6b01426
    [92] Lee D Y, Kim E K, Shin C Y, et al. Layer-by-layer deposition and photovoltaic property of Ru-based metal-organic frameworks. RSC Adv, 2014, 4(23): 12037 doi: 10.1039/c4ra00397g
    [93] Lopez H A, Dhakshinamoorthy A, Ferrer B, et al. Photochemical response of commercial MOFs: Al2(BDC)3 and its use as active material in photovoltaic devices. J Phys Chem C, 2011, 115(45): 22200 doi: 10.1021/jp206919m
    [94] Chi W S, Roh D K, Lee C S, et al. A shape-and morphologycontrolled metal organic framework template for high-efficiency solid-state dye-sensitized solar cells. J Mater Chem A, 2015, 3(43): 21599 doi: 10.1039/C5TA06731F
    [95] Liu J X, Zhou W C, Liu J X, et al. A new class of epitaxial porphyrin metal-organic framework thin films with extremely high photocarrier generation efficiency: promising materials for all-solid-state solar cells. J Mater Chem A, 2016, 4(33): 12739 doi: 10.1039/C6TA04898F
    [96] Deng H X, Grunder S, Cordova K E, et al. Large-pore apertures in a series of metal-organic frameworks. Science, 2012, 336(6084): 1018 doi: 10.1126/science.1220131
    [97] Park H J, So M C, Gosztola D, et al. Layer-by-layer assembled films of perylene diimide-and squaraine-containing metal-organic framework-like materials: Solar energy capture and directional energy transfer. ACS Appl Mater Interfaces, 2016, 8(38): 24983 doi: 10.1021/acsami.6b03307
    [98] Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater, 2017, 16(2): 220 doi: 10.1038/nmat4766
    [99] Zhang M, Ma L, Wang L L, et al. Insights into the use of metalorganic framework as high-performance anticorrosion coatings. ACS Appl Mater Interfaces, 2018, 10(3): 2259 doi: 10.1021/acsami.7b18713
    [100] Talin A A, Centrone A, Ford A C, et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science, 2013: 1246738 http://smartsearch.nstl.gov.cn/paper_detail.html?id=dfa1ad916706aed7fe1d8d58485e2667
    [101] Erickson K J, Leonard F, Stavila V, et al. Thin film thermoelectric metal-organic framework with high seebeck coefficient and low thermal conductivity. Adv Mater, 2015, 27(22): 3453 doi: 10.1002/adma.201501078
    [102] Jain P, Stroppa A, Nabok D, et al. Switchable electric polarization and ferroelectric domains in a metal-organic-framework. Npj Quantum Mater, 2016, 1(1): 16012 doi: 10.1038/npjquantmats.2016.12
    [103] Wang Z B, Nminibapiel D, Shrestha P, et al. Resistive switching nanodevices based on metal-organic frameworks. Chem Nano Mat, 2016, 2(1): 67 doi: 10.1002/cnma.201500143
    [104] Gu Z G, Chen S C, Fu W Q, et al. Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field-effect transistors. ACS Appl Mater Interfaces, 2017, 9(8): 7259 doi: 10.1021/acsami.6b14541
    [105] Shekhah O, Wang H, Zacher D, et al. Growth mechanism of metal-organic frameworks: insights into the nucleation by employing a step-by-step route. Angew Chem Int Ed, 2009, 48(27): 5038 doi: 10.1002/anie.200900378
    [106] Xu G, Yamada T, Otsubo K, et al. Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm. J Am Chem Soc, 2012, 134(40): 16524 doi: 10.1021/ja307953m
    [107] Ohnsorg M L, Beaudoin C K, Anderson M E. Fundamentals of MOF thin film growth via liquid-phase epitaxy: investigating the initiation of deposition and the influence of temperature. Langmuir, 2015, 31(22): 6114 doi: 10.1021/acs.langmuir.5b01333
    [108] Yu X J, Zhuang J L, Scherr J, et al. Minimization of surface energies and ripening outcompete template effects in the surface growth of metal-organic frameworks. Angew Chem Int Ed, 2016, 55(29): 8348 doi: 10.1002/anie.201602907
    [109] Hod I, Sampson M D, Deria P, et al. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal, 2015, 5(11): 6302 doi: 10.1021/acscatal.5b01767
    [110] Dragasser A, Shekhah O, Zybaylo O, et al. Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy. Chem Commun, 2012, 48(5): 663 doi: 10.1039/C1CC16580A
    [111] Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials. Nature, 2003, 423(6941): 705 doi: 10.1038/nature01650
  • 加載中
圖(10)
計量
  • 文章訪問數:  2417
  • HTML全文瀏覽量:  906
  • PDF下載量:  171
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-02-13
  • 刊出日期:  2019-03-20

目錄

    /

    返回文章
    返回