<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
SUN Chunlei, LI Linpei, ZHANG Haijun. OTFS-enabled integrated sensing and communication techniques for next-generation V2X networks[J]. Chinese Journal of Engineering, 2023, 45(10): 1674-1683. doi: 10.13374/j.issn2095-9389.2022.12.30.002
Citation: SUN Chunlei, LI Linpei, ZHANG Haijun. OTFS-enabled integrated sensing and communication techniques for next-generation V2X networks[J]. Chinese Journal of Engineering, 2023, 45(10): 1674-1683. doi: 10.13374/j.issn2095-9389.2022.12.30.002

OTFS-enabled integrated sensing and communication techniques for next-generation V2X networks

doi: 10.13374/j.issn2095-9389.2022.12.30.002
More Information
  • Corresponding author: E-mail: zhanghaijun@ustb.edu.cn
  • Received Date: 2022-12-30
    Available Online: 2023-04-12
  • Publish Date: 2023-10-25
  • The vehicle-to-everything (V2X) network has the potential to revolutionize the way we interact with vehicles and the surrounding. By utilizing innovative information and communication technologies, V2X networks can connect human beings, vehicles, roadside units, and even the cloud. In the near future, beyond 5G (B5G) and 6G technologies will enable the next-generation V2X networks to achieve superior communication and sensing capabilities, which is expected to offer advanced technologies such as intelligent driving and transportation. However, the strong Doppler effects arising from the high mobility of vehicles may lead to significant inter-carrier interference and pilot overheads in the existing orthogonal frequency division multiplexing (OFDM) systems, particularly as the millimeter wave and terahertz technologies dominate the B5G/6G era. In recent years, orthogonal time frequency space (OTFS) techniques have attracted attention owing to their ability to resist doubly-selective fading. In addition, the integrated sensing and communication (ISAC) based on OTFS (OTFS-ISAC) has emerged as a promising approach for V2X networks. In this context, our objective is to investigate the system structure, application and challenges of OTFS-ISAC in V2X networks, along with the related key techniques such as frame structure, pilot design and signal processing. First, we will explore the structures and fundamental theories of OTFS-ISAC systems, followed by the evaluation of communication and sensing performance. In particular, we will investigate the system architecture of OTFS-ISAC in monostatic and bistatic radar modes, respectively. Secondly, we will provide an overview of the state-of-the-art of OTFS techniques and further discuss the challenges and key techniques of OTFS-ISAC concerning the frame structure in the physical layer, pilot mechanism design, communication and radar signal analyses, etc. Finally, we will examine the case studies of OTFS-ISAC utilization in V2X networks to address corresponding major issues such as the inadequacy of Doppler resolution, low overhead beam scanning and target detection, and cooperative resource management. The ISAC system is in developmental stages, and this is the first comprehensive review that investigates the OTFS-ISAC system in detail. Although OTFS-ISAC offers significant advantages over OFDM-enabled ISAC in V2X characterized by high mobility, it faces numerous challenges in practical applications, including the well-known fractional Doppler effect and high peak-to-average ratio. However, with continuous development and technological advancements, it is anticipated that the OTFS-ISAC system will gain wide acceptance.

     

  • loading
  • [1]
    田野. 11部門聯合發布《智能汽車創新發展戰略》. 智能網聯汽車, 2020(2): 6

    Tian Y. 11 departments jointly issued “smart vehicles innovative and development strategies”. Intell Connect Veh, 2020(2): 6
    [2]
    閆實, 彭木根, 王文博. 通信–感知–計算融合: 6G愿景與關鍵技術. 北京郵電大學學報, 2021, 44(4): 1

    Yan S, Peng M G, Wang W B. Integration of communication, sensing and computing: The vision and key technologies of 6G. J Beijing Univ Posts Telecommun, 2021, 44(4): 1
    [3]
    Aydogdu C, Wymeersch H, Rydstr?m M. Can automotive radars form vehicular networks? // 2020 IEEE Radar Conference (RadarConf20). Florence, 2020: 1
    [4]
    潘暕, 許俊峰. 汽車電子行業專題報告: 車載網絡變革, 高速連接器迎來春天[J/OL]. 天風證券 (2021-09-01) [2022-12-30]. https://baijiahao.baidu.com/s?id=1709668350571257372&wfr=spider&for=pc

    Pan J, Xu J F. Report of automotive electronic industries: The revolution of vehicle networks, high-speed connectors are coming [J/OL]. Tianfeng security (2021-09-01) [2022-12-30]. https://baijiahao.baidu.com/s?id=1709668350571257372&wfr=spider&for=pc
    [5]
    Ma D Y, Shlezinger N, Huang T Y, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies. IEEE Signal Process Mag, 2020, 37(4): 85 doi: 10.1109/MSP.2020.2983832
    [6]
    Huang Z, Wang K X, Liu A, et al. Joint pilot optimization, target detection and channel estimation for integrated sensing and communication systems. IEEE Trans Wirel Commun, 2022, 21(12): 10351 doi: 10.1109/TWC.2022.3183621
    [7]
    Liu F, Cui Y H, Masouros C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond. IEEE J Sel Areas Commun, 2022, 40(6): 1728 doi: 10.1109/JSAC.2022.3156632
    [8]
    Hadani R, Rakib S, Tsatsanis M, et al. Orthogonal time frequency space modulation // 2017 IEEE Wireless Communications and Networking ConferenceWCNC). San Francisco, 2017: 1
    [9]
    Surabhi G D, Ramachandran M K, Chockalingam A. OTFS modulation with phase noise in mmWave communications // 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). Kuala Lumpur, 2019: 1
    [10]
    Wang Z D, Chen X Y, Ning X Y. BER analysis of integrated WFRFT-OTFS waveform framework over static multipath channels. IEEE Commun Lett, 2021, 25(3): 754 doi: 10.1109/LCOMM.2020.3040822
    [11]
    Zhang H J, Zhang T T, Shen Y. Modulation symbol cancellation for OTFS-based joint radar and communication // 2021 IEEE International Conference on Communications WorkshopsICC Workshops). Montreal, 2021: 1
    [12]
    Raviteja P, Phan K T, Hong Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation. IEEE Trans Wirel Commun, 2018, 17(10): 6501 doi: 10.1109/TWC.2018.2860011
    [13]
    Shi D, Wang W J, You L, et al. Deterministic pilot design and channel estimation for downlink massive MIMO-OTFS systems in presence of the fractional Doppler. IEEE Trans Wirel Commun, 2021, 20(11): 7151 doi: 10.1109/TWC.2021.3081164
    [14]
    Liu C W, Liu S H, Mao Z H, et al. Low-complexity parameter learning for OTFS modulation based automotive radar // 2021 IEEE International Conference on Acoustics, Speech and Signal ProcessingICASSP). Toronto, 2021: 8208
    [15]
    Yuan W J, Li S Y, Wei Z Q, et al. Bypassing channel estimation for OTFS transmission: An integrated sensing and communication solution // 2021 IEEE Wireless Communications and Networking Conference WorkshopsWCNCW). Nanjing, 2021: 1
    [16]
    龍航, 王森, 徐林飛, 等. OTFS技術研究現狀與展望. 電信科學, 2021, 37(9): 57 doi: 10.11959/j.issn.1000-0801.2021221

    Long H, Wang S, Xu L F, et al. OTFS technology research and prospect. Telecommun Sci, 2021, 37(9): 57 doi: 10.11959/j.issn.1000-0801.2021221
    [17]
    Naikoti A, Chockalingam A. Signal detection and channel estimation in OTFS. ZTE Commun, 2021, 19(4): 16
    [18]
    Xia X G. Comments on “the transmitted signals of OTFS and VOFDM are the same”. IEEE Trans Wirel Commun. 2022, 21(12): 11252
    [19]
    Gaudio L, Kobayashi M, Caire G, et al. On the effectiveness of OTFS for joint radar parameter estimation and communication. IEEE Trans Wirel Commun, 2020, 19(9): 5951 doi: 10.1109/TWC.2020.2998583
    [20]
    劉晨文. 基于OTFS調制的車載毫米波雷達通信一體化技術研究[學位論文]. 南京: 東南大學, 2021

    Liu C W. Research on Mmwave Automotive Integrated Radar and Communication Technology Based on OTFS Modulation [Dissertation]. Nanjing: Southeast University, 2021
    [21]
    Zhao L, Guo W B, Liu Y L, et al. Pilot optimization for OFDM-based OTFS systems over doubly selective channels // 2020 IEEE Global Communications Conference. Taipei, 2020: 1
    [22]
    李曉虹. 基于時延差和頻移差參數的衛星干擾源定位方法的研究[學位論文]. 長春: 吉林大學, 2007

    Li X H. Research on Interference Localization for Satellite Based on TDOA/FDOA Parameters Measurement [Dissertation]. Changchun: Jilin University, 2007
    [23]
    Raviteja P, Phan K T, Hong Y, et al. Orthogonal time frequency space (OTFS) modulation based radar system // 2019 IEEE Radar ConferenceRadarConf). Boston, 2019: 1
    [24]
    Surabhi G D, Augustine R M, Chockalingam A. Peak-to-average power ratio of OTFS modulation. IEEE Commun Lett, 2019, 23(6): 999 doi: 10.1109/LCOMM.2019.2914042
    [25]
    Naveen C, Sudha V. Peak-to-average power ratio reduction in OTFS modulation using companding technique // 2020 5th International Conference on Devices, Circuits and SystemsICDCS). Coimbatore, 2020: 140
    [26]
    徐湛, 李青宇, 鞏譯, 等. 正交時頻空: 適用于高多普勒擴展場景的調制技術. 西安郵電大學學報, 2021, 26(5): 1 doi: 10.13682/j.issn.2095-6533.2021.05.001

    Xu Z, Li Q, Gong Y. OTFS: A modulation technique for high Doppler spread scenarios. J Xi’an Univ Posts Telecommun, 2021, 26(5): 1 doi: 10.13682/j.issn.2095-6533.2021.05.001
    [27]
    Zhao Q M, Li S Q, Tang A M, et al. Energy-efficient reference signal optimization for 5G V2X joint communication and sensing // 2022 IEEE International Conference on Communications. Seoul, 2022: 1040
    [28]
    Kumari P, Gonzalez-Prelcic N, Heath R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar // 2015 IEEE 82nd Vehicular Technology ConferenceVTC2015-Fall). Boston, 2016: 1
    [29]
    Kumari P, Vorobyov S A, Heath R W. Adaptive virtual waveform design for millimeter-wave joint communication–radar. IEEE Trans Signal Process, 2019, 68: 715
    [30]
    Ma D Y, Huang T Y, Liu Y M, et al. A novel joint radar and communication system based on randomized partition of antenna array // 2018 IEEE International Conference on Acoustics, Speech and Signal ProcessingICASSP). Calgary, 2018: 3335
    [31]
    Wang X R, Hassanien A, Amin M G. Dual-function MIMO radar communications system design via sparse array optimization. IEEE Trans Aerosp Electron Syst, 2019, 55(3): 1213 doi: 10.1109/TAES.2018.2866038
    [32]
    Kumari P, Eltayeb M E, Heath R W. Sparsity-aware adaptive beamforming design for IEEE 802.11 ad-based joint communication-radar // 2018 IEEE Radar ConferenceRadarConf18). Oklahoma City, 2018: 923
    [33]
    Kumari P, Choi J, González-Prelcic N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system. IEEE Trans Veh Technol, 2018, 67(4): 3012
    [34]
    Karpovich P, Zielinski T P. Random-padded OTFS modulation for joint communication and radar/sensing systems // 2022 23rd International Radar SymposiumIRS). Gdansk, 2022: 104
    [35]
    Liu Y J, Guan Y L, González G D. BEM OTFS receiver with superimposed pilots over channels with Doppler and delay spread // ICC 2022 - IEEE International Conference on Communications. Seoul, 2022: 2411
    [36]
    Mishra H B, Singh P, Prasad A K, et al. Iterative channel estimation and data detection in OTFS using superimposed pilots // 2021 IEEE International Conference on Communications WorkshopsICC Workshops). Montreal, 2021: 1
    [37]
    Liu Y J, Guan Y L, David González G. Near-optimal BEM OTFS receiver with low pilot overhead for high-mobility communications. IEEE Trans Commun, 2022, 70(5): 3392 doi: 10.1109/TCOMM.2022.3162257
    [38]
    Liu F, Masouros C, Petropulu A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead. IEEE Trans Commun, 2020, 68(6): 3834 doi: 10.1109/TCOMM.2020.2973976
    [39]
    Xu X K, Zhao M M, Lei M, et al. A damped GAMP detection algorithm for OTFS system based on deep learning // 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Victoria, 2020: 1
    [40]
    Han K F, Ko S W, Chae H, et al. Sensing hidden vehicles by exploiting multi-path V2V transmission // 2018 IEEE 88th Vehicular Technology ConferenceVTC-Fall). Chicago, 2018: 1
    [41]
    Ali A, Gonzalez-Prelcic N, Heath R W, et al. Leveraging sensing at the infrastructure for mmWave communication. IEEE Commun Mag, 2020, 58(7): 84 doi: 10.1109/MCOM.001.1900700
    [42]
    Liu F, Masouros C. A tutorial on joint radar and communication transmission for vehicular networks—Part II: State of the art and challenges ahead. IEEE Commun Lett, 2021, 25(2): 327 doi: 10.1109/LCOMM.2020.3025339
    [43]
    Zhang Q X, Sun H Z, Gao X Y, et al. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation. IEEE J Sel Areas Commun, 2022, 40(7): 2206 doi: 10.1109/JSAC.2022.3155506
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)

    Article views (303) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164