Citation: | SUN Chunlei, LI Linpei, ZHANG Haijun. OTFS-enabled integrated sensing and communication techniques for next-generation V2X networks[J]. Chinese Journal of Engineering, 2023, 45(10): 1674-1683. doi: 10.13374/j.issn2095-9389.2022.12.30.002 |
[1] |
田野. 11部門聯合發布《智能汽車創新發展戰略》. 智能網聯汽車, 2020(2): 6
Tian Y. 11 departments jointly issued “smart vehicles innovative and development strategies”. Intell Connect Veh, 2020(2): 6
|
[2] |
閆實, 彭木根, 王文博. 通信–感知–計算融合: 6G愿景與關鍵技術. 北京郵電大學學報, 2021, 44(4): 1
Yan S, Peng M G, Wang W B. Integration of communication, sensing and computing: The vision and key technologies of 6G. J Beijing Univ Posts Telecommun, 2021, 44(4): 1
|
[3] |
Aydogdu C, Wymeersch H, Rydstr?m M. Can automotive radars form vehicular networks? // 2020 IEEE Radar Conference (RadarConf20). Florence, 2020: 1
|
[4] |
潘暕, 許俊峰. 汽車電子行業專題報告: 車載網絡變革, 高速連接器迎來春天[J/OL]. 天風證券 (2021-09-01) [2022-12-30]. https://baijiahao.baidu.com/s?id=1709668350571257372&wfr=spider&for=pc
Pan J, Xu J F. Report of automotive electronic industries: The revolution of vehicle networks, high-speed connectors are coming [J/OL]. Tianfeng security (2021-09-01) [2022-12-30]. https://baijiahao.baidu.com/s?id=1709668350571257372&wfr=spider&for=pc
|
[5] |
Ma D Y, Shlezinger N, Huang T Y, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies. IEEE Signal Process Mag, 2020, 37(4): 85 doi: 10.1109/MSP.2020.2983832
|
[6] |
Huang Z, Wang K X, Liu A, et al. Joint pilot optimization, target detection and channel estimation for integrated sensing and communication systems. IEEE Trans Wirel Commun, 2022, 21(12): 10351 doi: 10.1109/TWC.2022.3183621
|
[7] |
Liu F, Cui Y H, Masouros C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond. IEEE J Sel Areas Commun, 2022, 40(6): 1728 doi: 10.1109/JSAC.2022.3156632
|
[8] |
Hadani R, Rakib S, Tsatsanis M, et al. Orthogonal time frequency space modulation // 2017 IEEE Wireless Communications and Networking Conference (WCNC). San Francisco, 2017: 1
|
[9] |
Surabhi G D, Ramachandran M K, Chockalingam A. OTFS modulation with phase noise in mmWave communications // 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). Kuala Lumpur, 2019: 1
|
[10] |
Wang Z D, Chen X Y, Ning X Y. BER analysis of integrated WFRFT-OTFS waveform framework over static multipath channels. IEEE Commun Lett, 2021, 25(3): 754 doi: 10.1109/LCOMM.2020.3040822
|
[11] |
Zhang H J, Zhang T T, Shen Y. Modulation symbol cancellation for OTFS-based joint radar and communication // 2021 IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, 2021: 1
|
[12] |
Raviteja P, Phan K T, Hong Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation. IEEE Trans Wirel Commun, 2018, 17(10): 6501 doi: 10.1109/TWC.2018.2860011
|
[13] |
Shi D, Wang W J, You L, et al. Deterministic pilot design and channel estimation for downlink massive MIMO-OTFS systems in presence of the fractional Doppler. IEEE Trans Wirel Commun, 2021, 20(11): 7151 doi: 10.1109/TWC.2021.3081164
|
[14] |
Liu C W, Liu S H, Mao Z H, et al. Low-complexity parameter learning for OTFS modulation based automotive radar // 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto, 2021: 8208
|
[15] |
Yuan W J, Li S Y, Wei Z Q, et al. Bypassing channel estimation for OTFS transmission: An integrated sensing and communication solution // 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). Nanjing, 2021: 1
|
[16] |
龍航, 王森, 徐林飛, 等. OTFS技術研究現狀與展望. 電信科學, 2021, 37(9): 57 doi: 10.11959/j.issn.1000-0801.2021221
Long H, Wang S, Xu L F, et al. OTFS technology research and prospect. Telecommun Sci, 2021, 37(9): 57 doi: 10.11959/j.issn.1000-0801.2021221
|
[17] |
Naikoti A, Chockalingam A. Signal detection and channel estimation in OTFS. ZTE Commun, 2021, 19(4): 16
|
[18] |
Xia X G. Comments on “the transmitted signals of OTFS and VOFDM are the same”. IEEE Trans Wirel Commun. 2022, 21(12): 11252
|
[19] |
Gaudio L, Kobayashi M, Caire G, et al. On the effectiveness of OTFS for joint radar parameter estimation and communication. IEEE Trans Wirel Commun, 2020, 19(9): 5951 doi: 10.1109/TWC.2020.2998583
|
[20] |
劉晨文. 基于OTFS調制的車載毫米波雷達通信一體化技術研究[學位論文]. 南京: 東南大學, 2021
Liu C W. Research on Mmwave Automotive Integrated Radar and Communication Technology Based on OTFS Modulation [Dissertation]. Nanjing: Southeast University, 2021
|
[21] |
Zhao L, Guo W B, Liu Y L, et al. Pilot optimization for OFDM-based OTFS systems over doubly selective channels // 2020 IEEE Global Communications Conference. Taipei, 2020: 1
|
[22] |
李曉虹. 基于時延差和頻移差參數的衛星干擾源定位方法的研究[學位論文]. 長春: 吉林大學, 2007
Li X H. Research on Interference Localization for Satellite Based on TDOA/FDOA Parameters Measurement [Dissertation]. Changchun: Jilin University, 2007
|
[23] |
Raviteja P, Phan K T, Hong Y, et al. Orthogonal time frequency space (OTFS) modulation based radar system // 2019 IEEE Radar Conference (RadarConf). Boston, 2019: 1
|
[24] |
Surabhi G D, Augustine R M, Chockalingam A. Peak-to-average power ratio of OTFS modulation. IEEE Commun Lett, 2019, 23(6): 999 doi: 10.1109/LCOMM.2019.2914042
|
[25] |
Naveen C, Sudha V. Peak-to-average power ratio reduction in OTFS modulation using companding technique // 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). Coimbatore, 2020: 140
|
[26] |
徐湛, 李青宇, 鞏譯, 等. 正交時頻空: 適用于高多普勒擴展場景的調制技術. 西安郵電大學學報, 2021, 26(5): 1 doi: 10.13682/j.issn.2095-6533.2021.05.001
Xu Z, Li Q, Gong Y. OTFS: A modulation technique for high Doppler spread scenarios. J Xi’an Univ Posts Telecommun, 2021, 26(5): 1 doi: 10.13682/j.issn.2095-6533.2021.05.001
|
[27] |
Zhao Q M, Li S Q, Tang A M, et al. Energy-efficient reference signal optimization for 5G V2X joint communication and sensing // 2022 IEEE International Conference on Communications. Seoul, 2022: 1040
|
[28] |
Kumari P, Gonzalez-Prelcic N, Heath R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar // 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall). Boston, 2016: 1
|
[29] |
Kumari P, Vorobyov S A, Heath R W. Adaptive virtual waveform design for millimeter-wave joint communication–radar. IEEE Trans Signal Process, 2019, 68: 715
|
[30] |
Ma D Y, Huang T Y, Liu Y M, et al. A novel joint radar and communication system based on randomized partition of antenna array // 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, 2018: 3335
|
[31] |
Wang X R, Hassanien A, Amin M G. Dual-function MIMO radar communications system design via sparse array optimization. IEEE Trans Aerosp Electron Syst, 2019, 55(3): 1213 doi: 10.1109/TAES.2018.2866038
|
[32] |
Kumari P, Eltayeb M E, Heath R W. Sparsity-aware adaptive beamforming design for IEEE 802.11 ad-based joint communication-radar // 2018 IEEE Radar Conference (RadarConf18). Oklahoma City, 2018: 923
|
[33] |
Kumari P, Choi J, González-Prelcic N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system. IEEE Trans Veh Technol, 2018, 67(4): 3012
|
[34] |
Karpovich P, Zielinski T P. Random-padded OTFS modulation for joint communication and radar/sensing systems // 2022 23rd International Radar Symposium (IRS). Gdansk, 2022: 104
|
[35] |
Liu Y J, Guan Y L, González G D. BEM OTFS receiver with superimposed pilots over channels with Doppler and delay spread // ICC 2022 - IEEE International Conference on Communications. Seoul, 2022: 2411
|
[36] |
Mishra H B, Singh P, Prasad A K, et al. Iterative channel estimation and data detection in OTFS using superimposed pilots // 2021 IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, 2021: 1
|
[37] |
Liu Y J, Guan Y L, David González G. Near-optimal BEM OTFS receiver with low pilot overhead for high-mobility communications. IEEE Trans Commun, 2022, 70(5): 3392 doi: 10.1109/TCOMM.2022.3162257
|
[38] |
Liu F, Masouros C, Petropulu A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead. IEEE Trans Commun, 2020, 68(6): 3834 doi: 10.1109/TCOMM.2020.2973976
|
[39] |
Xu X K, Zhao M M, Lei M, et al. A damped GAMP detection algorithm for OTFS system based on deep learning // 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Victoria, 2020: 1
|
[40] |
Han K F, Ko S W, Chae H, et al. Sensing hidden vehicles by exploiting multi-path V2V transmission // 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). Chicago, 2018: 1
|
[41] |
Ali A, Gonzalez-Prelcic N, Heath R W, et al. Leveraging sensing at the infrastructure for mmWave communication. IEEE Commun Mag, 2020, 58(7): 84 doi: 10.1109/MCOM.001.1900700
|
[42] |
Liu F, Masouros C. A tutorial on joint radar and communication transmission for vehicular networks—Part II: State of the art and challenges ahead. IEEE Commun Lett, 2021, 25(2): 327 doi: 10.1109/LCOMM.2020.3025339
|
[43] |
Zhang Q X, Sun H Z, Gao X Y, et al. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation. IEEE J Sel Areas Commun, 2022, 40(7): 2206 doi: 10.1109/JSAC.2022.3155506
|