Citation: | HAN Fengguang, YANG Tao, ZHAO Hexi, WANG Minghe, WANG Yifan, LONG Hongming, LEI Jie, JIANG Tao. Effects and mechanism of composite binder on high-temperature consolidation of pellets[J]. Chinese Journal of Engineering, 2023, 45(9): 1450-1458. doi: 10.13374/j.issn2095-9389.2022.11.17.003 |
[1] |
Halt J A, Kawatra S K. Review of organic binders for iron ore concentrate agglomeration. Min Metall Explor, 2014, 31(2): 73
|
[2] |
Qian L X, Yang T, Long H M, et al. Recycling of waste V2O5–WO3/TiO2 catalysts in the iron ore sintering process via a preballing approach. ACS Sustainable Chem Eng, 2021, 9(48): 16373 doi: 10.1021/acssuschemeng.1c06271
|
[3] |
雷杰, 汪名赫, 周江虹, 等. 新型復合粘結劑提高生球質量的作用機理及構效關系. 工程科學學報, 2023, 45(1):91
Lei J, Wang M H, Zhou J H, et al. Mechanism and structure-activity relationship of new composite binders for improving the quality of green pellets. Chin J Eng, 2023, 45(1): 91
|
[4] |
Wang Y F, Ding L, Shi Q, et al. Volatile organic compounds (VOC) emissions control in iron ore sintering process: Recent progress and future development. Chem Eng J, 2022, 448: 137601 doi: 10.1016/j.cej.2022.137601
|
[5] |
張建良, 劉征建, 焦克新, 等. 煉鐵新技術及基礎理論研究進展. 工程科學學報, 2021, 43(12):1630 doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112005
Zhang J L, Liu Z J, Jiao K X, et al. Progress of new technologies and fundamental theory about ironmaking. Chin J Eng, 2021, 43(12): 1630 doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112005
|
[6] |
Srivastava U, Kawatra S K, Eisele T C. Study of organic and inorganic binders on strength of iron oxide pellets. Metall Mater Trans B, 2013, 44(4): 1000 doi: 10.1007/s11663-013-9838-4
|
[7] |
Mcgannon H E. The Making, Shaping and Treating of Steel. Pittsburgh: United States Steel, 1971
|
[8] |
李騫, 馬永和, 唐銀華, 等. 鐵礦球團用有機黏結劑研究進展. 鋼鐵, 2022, 57(11):11
Li Q, Ma Y H, Tang Y H, et al. Research progress of organic binder for iron ore pellets. Iron steel, 2022, 57(11): 11
|
[9] |
Claremboux V, Kawatra S K. Iron ore pelletization: Part III. Organic binders. Miner Process Extr Metall Rev, 2023, 44(2): 138 doi: 10.1080/08827508.2022.2029431
|
[10] |
Halt J A, Kawatra S K. Does the zeta potential of an iron ore concentrate affect the strength and dustiness of unfired and fired pellets? Miner Process Extr Metall Rev, 2017, 38(2): 132
|
[11] |
de Moraes S L, de Lima J R B, Neto J B F. Effect of colloidal agents in iron ore pelletizing. Miner Process Extr Metall Rev, 2018, 39(6): 414 doi: 10.1080/08827508.2018.1481060
|
[12] |
de Moraes S L, de Lima J R B, Neto J B F, et al. Binding mechanism in green iron ore pellets with an organic binder. Miner Process Extr Metall Rev, 2020, 41(4): 247 doi: 10.1080/08827508.2019.1604521
|
[13] |
Qiu G Z, Jiang T, Li H X, et al. Functions and molecular structure of organic binders for iron ore pelletization. Colloids Surf A Physicochem Eng Aspects, 2003, 224(1-3): 11 doi: 10.1016/S0927-7757(03)00264-4
|
[14] |
Sivrikaya O, Arol A I. Pelletization of magnetite ore with colemanite added organic binders. Powder Technol, 2011, 210(1): 23 doi: 10.1016/j.powtec.2011.02.007
|
[15] |
Fan X H, Yang G M, Chen X L, et al. Effect of carboxymethyl cellulose on the drying dynamics and thermal cracking performance of iron ore green pellets. Powder Technol, 2014, 267: 11 doi: 10.1016/j.powtec.2014.07.011
|
[16] |
Liu S, Zhang Y B, Su Z J, et al. Improving the properties of magnetite green pellets with a novel organic composite binder. Materials, 2022, 15(19): 6999 doi: 10.3390/ma15196999
|
[17] |
Dai X, Theppitak S, Yoshikawa K. Pelletization of carbonized wood using organic binders with biomass gasification residue as additive. Energy Fuels, 2018, 33(1): 323
|
[18] |
Li C X, Bai Y, Ren R C, et al. Study of the mechanism for improving green pellet performance with compound binders. Physicochem Probl Mi, 2019, 55(1): 153
|
[19] |
Kotta A B, Patra A, Kumar M, et al. Effect of molasses binder on the physical and mechanical properties of iron ore pellets. Int J Miner Metall Mater, 2019, 26(1): 41 doi: 10.1007/s12613-019-1708-x
|
[20] |
李宏煦, 王淀佐, 胡岳華, 等. 羧甲基淀粉鈉提高球團強度的機理. 中南工業大學學報(自然科學版), 2001, 32(4):351
Li H X, Wang D Z, Hu Y H, et al. The mechanism of improving pellet strength by carboxyl methlated amylum. J Central South Univ Technol (Nat Sci), 2001, 32(4): 351
|
[21] |
Zhao H X, Zhou F S, Bao X C, et al. A review on the humic substances in pelletizing binders: Preparation, interaction mechanism, and process characteristics. ISIJ Int, 2023, 63(2): 205 doi: 10.2355/isijinternational.ISIJINT-2022-306
|
[22] |
黃柱成, 王雨蒙, 柴斌, 等. 纖維化膨潤土強化氧化球團制備及其機理. 中南大學學報(自然科學版), 2014, 45(7):2145
Huang Z C, Wang Y M, Chai B, et al. Preparation of oxide pellets with fibrosis bentonite and its mechanism. J Central South Univ (Sci Technol), 2014, 45(7): 2145
|
[23] |
侯恩儉, 翁興洋, 范曉慧. 纖維化復合膨潤土強化氧化球團制備研究. 燒結球團, 2019, 44(4):40
Hou E J, Weng X Y, Fan X H. Study on strengthening preparation of oxide pellets with fibration composite bentonite. Sinter Pelletizing, 2019, 44(4): 40
|
[24] |
陳許玲, 甘敏, 范曉慧, 等. 有機粘結劑氧化球團固結特性及強化措施. 中南大學學報(自然科學版), 2009, 40(3):550
Chen X L, Gan M, Fan X H, et al. Concretion properties of organic-binder oxidate pellets and strengthen measures. J Central South Univ (Sci Technol), 2009, 40(3): 550
|
[25] |
陳許玲, 劉樹, 甘敏, 等. 高鈦球團焙燒行為及其強化技術. 工程科學學報, 2016, 38(7):920
Chen X L, Liu S, Gan M, et al. Roasting behavior and enhancing technology of high-titanium pellets. Chin J Eng, 2016, 38(7): 920
|