Citation: | LI Pan, HU Qiuhui, HU Junhao, CHEN Zhiyong, ZHANG Yongsheng, FANG Shuqi, CHANG Chun. Research progress on biomass catalytic pyrolysis via microwave effects combined with carbon-based catalysts[J]. Chinese Journal of Engineering, 2023, 45(9): 1592-1601. doi: 10.13374/j.issn2095-9389.2022.11.16.002 |
[1] |
朱家華, 穆立文, 蔣管聰, 等. 生物質協同流程工業節能、降污、減碳路徑思考. 化工進展, 2022, 41(3):1111 doi: 10.16085/j.issn.1000-6613.2021-2229
Zhu J H, Mu L W, Jiang G C, et al. Biomass integrated industrial processes for system energy conservation, pollution reduction and carbon dioxide mitigation. Chem Ind Eng Prog, 2022, 41(3): 1111 doi: 10.16085/j.issn.1000-6613.2021-2229
|
[2] |
汪開英, 李鑫, 陸建定, 等. 碳中和目標下畜牧業低碳發展路徑. 農業工程學報, 2022, 38(1):230 doi: 10.11975/j.issn.1002-6819.2022.01.026
Wang K Y, Li X, Lu J D, et al. Low-carbon development strategies of livestock industry to achieve goal of carbon neutrality in China. Trans Chin Soc Agric Eng, 2022, 38(1): 230 doi: 10.11975/j.issn.1002-6819.2022.01.026
|
[3] |
全國煤化工信息總站. 2021年中國能源生產、消費、進出口. 煤化工, 2022, 50(1):4 doi: 10.3969/j.issn.1005-9598.2022.01.003
National Coal Chemical Information Center. Energy production, consumption, import and export in China in 2021. Coal Chem Ind, 2022, 50(1): 4 doi: 10.3969/j.issn.1005-9598.2022.01.003
|
[4] |
王芳, 劉曉風, 陳倫剛, 等. 生物質資源能源化與高值利用研究現狀及發展前景. 農業工程學報, 2021, 37(18):219
Wang F, Liu X F, Chen L G, et al. Research status and development prospect of energy and high value utilization of biomass resources. Trans Chin Soc Agric Eng, 2021, 37(18): 219
|
[5] |
潘濤, 薛念濤, 孫長虹, 等. 北京市畜禽養殖業氨排放的分布特征. 環境科學與技術, 2015, 38(3):159
Pan T, Xue N T, Sun C H, et al. Distribution characteristics of ammonia emission from livestock farming industry in Beijing. Environ Sci Technol, 2015, 38(3): 159
|
[6] |
陸曉波, 喻義勇, 傅寅, 等. 秸稈焚燒對空氣質量影響特征及判別方法的研究. 環境監測管理與技術, 2014, 26(4):17 doi: 10.3969/j.issn.1006-2009.2014.04.005
Lu X B, Yu Y Y, Fu Y, et al. Characterization and identification method of ambient air quality influenced by straw burning. Adm Tech Environ Monit, 2014, 26(4): 17 doi: 10.3969/j.issn.1006-2009.2014.04.005
|
[7] |
Xin X, Dell K, Udugama I A, et al. Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring. J Clean Prod, 2021, 294: 125368 doi: 10.1016/j.jclepro.2020.125368
|
[8] |
Tawalbeh M, Al-Othman A, Salamah T, et al. A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials. J Environ Manag, 2021, 299: 113597 doi: 10.1016/j.jenvman.2021.113597
|
[9] |
Ethaib S, Omar R, Kamal S M M, et al. Microwave-assisted pyrolysis of biomass waste: A mini review. Processes, 2020, 8(9): 1190 doi: 10.3390/pr8091190
|
[10] |
曾媛, 王允圃, 張淑梅, 等. 生物質微波熱解制備液體燃料和化學品的研究進展. 化工進展, 2021, 40(6):3151
Zeng Y, Wang Y P, Zhang S M, et al. Research progress in preparation of liquid fuels and chemicals by microwave pyrolysis of biomass. Chem Ind Eng Prog, 2021, 40(6): 3151
|
[11] |
Zhang Y N, Cui Y L, Liu S Y, et al. Fast microwave-assisted pyrolysis of wastes for biofuels production — A review. Bioresour Technol, 2020, 297: 122480 doi: 10.1016/j.biortech.2019.122480
|
[12] |
Motasemi F, Afzal M T. A review on the microwave-assisted pyrolysis technique. Renew Sustain Energy Rev, 2013, 28: 317 doi: 10.1016/j.rser.2013.08.008
|
[13] |
李攀, 師曉鵬, 宋建德, 等. 生物質微波催化熱解制備高值產品的研究進展. 化工進展, 2022, 41(1):133 doi: 10.16085/j.issn.1000-6613.2021-0303
Li P, Shi X P, Song J D, et al. Research progress of biomass microwave catalytic pyrolysis for preparation of high value-added products. Chem Ind Eng Prog, 2022, 41(1): 133 doi: 10.16085/j.issn.1000-6613.2021-0303
|
[14] |
Wang G Y, Dai Y J, Yang H P, et al. A review of recent advances in biomass pyrolysis. Energy Fuels. 2020, 34(12): 15557
|
[15] |
Wang Y P, Dai L L, Wang R P, et al. Hydrocarbon fuel production from soapstock through fast microwave-assisted pyrolysis using microwave absorbent. J Anal Appl Pyrolysis, 2016, 119: 251 doi: 10.1016/j.jaap.2016.01.008
|
[16] |
Fodah A E M, Ghosal M K, Behera D. Quality assessment of bio-oil and biochar from microwave-assisted pyrolysis of corn stover using different adsorbents. J Energy Inst, 2021, 98: 63 doi: 10.1016/j.joei.2021.06.008
|
[17] |
方書起, 王毓謙, 李攀, 等. 生物質熱解利用中主要催化劑的研究進展. 化工進展, 2021, 40(9):5195 doi: 10.16085/j.issn.1000-6613.2021-0245
Fang S Q, Wang Y Q, Li P, et al. Research progress of main catalyst in biomass pyrolysis and utilization. Chem Ind Eng Prog, 2021, 40(9): 5195 doi: 10.16085/j.issn.1000-6613.2021-0245
|
[18] |
Zhang B, Zhong Z P, Li T, et al. Bio-oil production from sequential two-step microwave-assisted catalytic fast pyrolysis of water hyacinth using Ce-doped γ-Al2O3/ZrO2 composite mesoporous catalyst. J Anal Appl Pyrolysis, 2018, 132: 143 doi: 10.1016/j.jaap.2018.03.006
|
[19] |
Nishu, Liu R H, Rahman M M, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure. Fuel Process Technol, 2020, 199: 106301 doi: 10.1016/j.fuproc.2019.106301
|
[20] |
Wang L, Lei H W, Ren S J, et al. Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst. J Anal Appl Pyrolysis, 2012, 98: 194 doi: 10.1016/j.jaap.2012.08.002
|
[21] |
Yang Z X, Kumar A, Apblett A. Integration of biomass catalytic pyrolysis and methane aromatization over Mo/HZSM-5 catalysts. J Anal Appl Pyrolysis, 2016, 120: 484 doi: 10.1016/j.jaap.2016.06.021
|
[22] |
Wang J X, Zhang S P, Su Y H, et al. Construction of Fe embedded graphene nanoshell/carbon nanofibers catalyst for catalytic cracking of biomass tar: Effect of CO2 etching. Fuel, 2021, 305: 121552 doi: 10.1016/j.fuel.2021.121552
|
[23] |
Shen Y F. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renew Sustain Energy Rev, 2015, 43: 281 doi: 10.1016/j.rser.2014.11.061
|
[24] |
Dong Q, Niu M M, Bi D M, et al. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production. Bioresour Technol, 2018, 256: 145 doi: 10.1016/j.biortech.2018.02.018
|
[25] |
王嘉駿. Fe, Co, Cu改性HZSM-5催化熱解制備生物油的試驗研究[學位論文]. 鎮江: 江蘇大學, 2017
Wang J J. Experimental Study on Catalytic Pyrolysis of HZSM-5 Modified by Fe, Co and Cu to Prepare Bio-oil. [Dissertation]. Zhenjiang: Jiangsu University, 2017
|
[26] |
Liang S, Guo F Q, Du S L, et al. Synthesis of Sargassum char-supported Ni-Fe nanoparticles and its application in tar cracking during biomass pyrolysis. Fuel, 2020, 275: 117923 doi: 10.1016/j.fuel.2020.117923
|
[27] |
Liu S S, Wu G, Syed-Hassan S S A, et al. Catalytic pyrolysis of pine wood over char-supported Fe: Bio-oil upgrading and catalyst regeneration by CO2/H2O. Fuel, 2022, 307: 121778 doi: 10.1016/j.fuel.2021.121778
|
[28] |
Tang W, Cao J P, Wang Z H, et al. Comparative evaluation of tar steam reforming over graphitic carbon supported Ni and Co catalysts at low temperature. Energy Convers Manag, 2021, 244: 114454 doi: 10.1016/j.enconman.2021.114454
|
[29] |
Wang Y, Jiang L, Hu S, et al. Evolution of structure and activity of char-supported iron catalysts prepared for steam reforming of bio-oil. Fuel Process Technol, 2017, 158: 180 doi: 10.1016/j.fuproc.2017.01.002
|
[30] |
Shang S, Guo C Q, Lan K, et al. Hydrogen-rich syngas production via catalytic gasification of sewage sludge and wheat straw using corn stalk char-supported catalysts. BioResources, 2020, 15(2): 4294 doi: 10.15376/biores.15.2.4294-4313
|
[31] |
Lan K, Qin Z H, Li Z S, et al. Syngas production by catalytic pyrolysis of rice straw over modified Ni-based catalyst. BioResources, 2020, 15(2): 2293 doi: 10.15376/biores.15.2.2293-2309
|
[32] |
Cao L C, Yu I K M, Tsang D C W, et al. Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Bioresour Technol, 2018, 267: 242 doi: 10.1016/j.biortech.2018.07.048
|
[33] |
Zhang Y Y, Lei H W, Yang Z X, et al. From glucose-based carbohydrates to phenol-rich bio-oils integrated with syngas production via catalytic pyrolysis over an activated carbon catalyst. Green Chem, 2018, 20(14): 3346 doi: 10.1039/C8GC00593A
|
[34] |
Yang H P, Chen Z Q, Chen W, et al. Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis. Energy, 2020, 210: 118646 doi: 10.1016/j.energy.2020.118646
|
[35] |
Xiong X N, Yu I K M, Cao L C, et al. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour Technol, 2017, 246: 254 doi: 10.1016/j.biortech.2017.06.163
|
[36] |
Xie Q Q, Yang X, Xu K N, et al. Conversion of biochar to sulfonated solid acid catalysts for spiramycin hydrolysis: Insights into the sulfonation process. Environ Res, 2020, 188: 109887 doi: 10.1016/j.envres.2020.109887
|
[37] |
Wang Y T, Delbecq F, Kwapinski W, et al. Application of sulfonated carbon-based catalyst for the furfural production from d-xylose and xylan in a microwave-assisted biphasic reaction. Mol Catal, 2017, 438: 167 doi: 10.1016/j.mcat.2017.05.031
|
[38] |
Zhang T W, Li W Z, Jin Y C, et al. Synthesis of sulfonated chitosan-derived carbon-based catalysts and their applications in the production of 5-hydroxymethylfurfural. Int J Biol Macromol, 2020, 157: 368 doi: 10.1016/j.ijbiomac.2020.04.148
|
[39] |
Lin Q Q, Zhang S P, Wang J X, et al. Synthesis of modified char-supported Ni–Fe catalyst with hierarchical structure for catalytic cracking of biomass tar. Renew Energy, 2021, 174: 188 doi: 10.1016/j.renene.2021.04.084
|
[40] |
Hao J Y, Qi B J, Li D, et al. Catalytic co-pyrolysis of rice straw and ulva prolifera macroalgae: Effects of process parameter on bio-oil up-gradation. Renew Energy, 2021, 164: 460 doi: 10.1016/j.renene.2020.09.056
|
[41] |
Lu Q X, Yuan S F, Wang X Y, et al. Coking behavior and syngas composition of the char supported Fe catalyst of biomass pyrolysis volatiles reforming. Fuel, 2021, 298: 120830 doi: 10.1016/j.fuel.2021.120830
|
[42] |
Fan X D, Wu Y J, Tu R, et al. Hydrodeoxygenation of guaiacol via rice husk char supported Ni based catalysts: The influence of char supports. Renew Energy, 2020, 157: 1035 doi: 10.1016/j.renene.2020.05.045
|
[43] |
Xu Y, Li X, Zhang X C, et al. Hydrolysis of corncob using a modified carbon-based solid acid catalyst. BioResources, 2016, 11(4): 10469
|
[44] |
Chai Y, Wang M H, Gao N B, et al. Experimental study on pyrolysis/gasification of biomass and plastics for H2 production under new dual-support catalyst. Chem Eng J, 2020, 396: 125260 doi: 10.1016/j.cej.2020.125260
|
[45] |
Huo E G, Duan D L, Lei H W, et al. Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts. Energy, 2020, 199: 117459 doi: 10.1016/j.energy.2020.117459
|
[46] |
Chang C, Liu Z H, Li P, et al. Study on products characteristics from catalytic fast pyrolysis of biomass based on the effects of modified biochars. Energy, 2021, 229: 120818 doi: 10.1016/j.energy.2021.120818
|
[47] |
Liang S, Tian B L, Guo F Q, et al. Porous silicon film overcoating biomass char-supported catalysts for improved activity and stability in biomass pyrolysis tar decomposition. Catal Sci Technol, 2021, 11(17): 5938 doi: 10.1039/D1CY00649E
|
[48] |
Guo F Q, Peng K Y, Liang S, et al. Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis. Fuel, 2019, 258: 116204 doi: 10.1016/j.fuel.2019.116204
|
[49] |
Godina L I, Kirilin A V, Tokarev A V, et al. Sibunit-supported mono- and bimetallic catalysts used in aqueous-phase reforming of xylitol. Ind Eng Chem Res, 2018, 57(6): 2050 doi: 10.1021/acs.iecr.7b04937
|
[50] |
Bu Q, Lei H W, Wang L, et al. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons. Bioresour Technol, 2014, 162: 142 doi: 10.1016/j.biortech.2014.03.103
|
[51] |
Yogalakshmi K N, Poornima D T, Sivashanmugam P, et al. Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere, 2022, 286(2): 131824
|
[52] |
Shi K Q, Yan J F, Menéndez J A, et al. Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming. Front Chem, 2020, 8: 3 doi: 10.3389/fchem.2020.00003
|
[53] |
Zhu L, Zhang Y Y, Lei H W, et al. Production of hydrocarbons from biomass-derived biochar assisted microwave catalytic pyrolysis. Sustainable Energy Fuels, 2018, 2(8): 1781 doi: 10.1039/C8SE00096D
|
[54] |
Bu Q, Lei H W, Wang L, et al. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts. Bioresour Technol, 2013, 142: 546 doi: 10.1016/j.biortech.2013.05.073
|
[55] |
Yerrayya A, Suriapparao D V, Natarajan U, et al. Selective production of phenols from lignin via microwave pyrolysis using different carbonaceous susceptors. Bioresour Technol, 2018, 270: 519 doi: 10.1016/j.biortech.2018.09.051
|
[56] |
An Y, Tahmasebi A, Zhao X H, et al. Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: Enhanced production of phenol and hydrogen. Bioresour Technol, 2020, 306: 123111 doi: 10.1016/j.biortech.2020.123111
|
[57] |
Zhang S P, Dong Q, Zhang L, et al. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresour Technol, 2015, 191: 17 doi: 10.1016/j.biortech.2015.04.114
|
[58] |
Dai L L, Zeng Z H, Yang Q, et al. Synthesis of iron nanoparticles-based hydrochar catalyst for ex-situ catalytic microwave-assisted pyrolysis of lignocellulosic biomass to renewable phenols. Fuel, 2020, 279: 118532 doi: 10.1016/j.fuel.2020.118532
|
[59] |
Chellappan S, Aparna K, Chingakham C, et al. Microwave assisted biodiesel production using a novel Br?nsted acid catalyst based on nanomagnetic biocomposite. Fuel, 2019, 246: 268 doi: 10.1016/j.fuel.2019.02.104
|
[60] |
Huang S S, Xu H L, Li H Y, et al. Preparation and characterization of char supported Ni-Cu nanoalloy catalyst for biomass tar cracking together with syngas-rich gas production. Fuel Process Technol, 2021, 218: 106858 doi: 10.1016/j.fuproc.2021.106858
|
[61] |
Fidalgo B, Arenillas A, Menéndez J A. Mixtures of carbon and Ni/Al2O3 as catalysts for the microwave-assisted CO2 reforming of CH4. Fuel Process Technol, 2011, 92(8): 1531 doi: 10.1016/j.fuproc.2011.03.015
|
[62] |
Li J, Tao J Y, Yan B B, et al. Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound. Appl Energy, 2020, 261: 114375 doi: 10.1016/j.apenergy.2019.114375
|
[63] |
Chen G Y, Li J, Cheng Z J, et al. Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research. Appl Energy, 2018, 217: 249 doi: 10.1016/j.apenergy.2018.02.028
|
[64] |
Dong Q, Li H J, Niu M M, et al. Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst. Bioresour Technol, 2018, 266: 284 doi: 10.1016/j.biortech.2018.06.104
|
[65] |
Luo H, Bao L W, Wang H, et al. Microwave-assisted in situ elimination of primary tars over biochar: Low temperature behaviours and mechanistic insights. Bioresour Technol, 2018, 267: 333 doi: 10.1016/j.biortech.2018.07.071
|
[66] |
Bu Q, Lei H W, Ren S J, et al. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol, 2011, 102(13): 7004 doi: 10.1016/j.biortech.2011.04.025
|
[67] |
Omoriyekomwan J E, Tahmasebi A, Yu J L. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell. Bioresour Technol, 2016, 207: 188 doi: 10.1016/j.biortech.2016.02.002
|
[68] |
Zeng Z H, Tian X J, Wang Y P, et al. Microwave-assisted catalytic pyrolysis of corn cobs with Fe-modified Choerospondias axillaris seed-based biochar catalyst for phenol-rich bio-oil. J Anal Appl Pyrolysis, 2021, 159: 105306 doi: 10.1016/j.jaap.2021.105306
|
[69] |
Dong Q, Li H J, Zhang S P, et al. Biomass tar cracking and syngas production using rice husk char-supported nickel catalysts coupled with microwave heating. RSC Adv, 2018, 8(71): 40873 doi: 10.1039/C8RA09045A
|
[70] |
Bu Q, Lei H W, Wang L, et al. Biofuel production from catalytic microwave pyrolysis of Douglas fir pellets over ferrum-modified activated carbon catalyst. J Anal Appl Pyrolysis, 2015, 112: 74 doi: 10.1016/j.jaap.2015.02.019
|
[71] |
Morgan H M Jr, Liang J H, Chen K, et al. Bio-oil production via catalytic microwave co-pyrolysis of lignin and low density polyethylene using zinc modified lignin-based char as a catalyst. J Anal Appl Pyrolysis, 2018, 133: 107 doi: 10.1016/j.jaap.2018.04.014
|
[72] |
Chen C X, Bu X Y, Qi Q H, et al. Experimental study on microwave pyrolysis of Dunaliella salina using compound additives. Bioenerg Res, 2021, 14(4): 1300 doi: 10.1007/s12155-020-10222-8
|