Citation: | HU Jingyi, XU Xiang, JI Xiaomei, XU Mingxian, JIANG Daifeng, WANG Jin. Machine learning in designing amorphous alloys[J]. Chinese Journal of Engineering, 2023, 45(9): 1517-1527. doi: 10.13374/j.issn2095-9389.2022.11.11.002 |
[1] |
Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold–silicon alloys. Nature, 1960, 187(4740): 869
|
[2] |
Koledin T D, Saini J S, Xu D H, et al. Characterization of a new rare-earth-free Cu-based bulk metallic glass. Microsc Microanal, 2022, 28(Suppl 1): 2782
|
[3] |
Ohashi Y, Wada T, Kato H. High-entropy design and its influence on glass-forming ability in Zr-Cu-based metallic glass. J Alloys Compd, 2022, 915: 165366 doi: 10.1016/j.jallcom.2022.165366
|
[4] |
Zhang X P, Lai L M, Xiao S M, et al. Effect of W on the thermal stability, mechanical properties and corrosion resistance of Fe-based bulk metallic glass. Intermetallics, 2022, 143: 107485 doi: 10.1016/j.intermet.2022.107485
|
[5] |
Shan F L, Sun T T, Song W D, et al. A bridge from metallic glasses to medium-entropy alloys in Ti–Cu–Zr–Pd–Co system: Design, microstructure, and deformation-induced-martensitic transformation. J Non Cryst Solids, 2022, 587: 121608 doi: 10.1016/j.jnoncrysol.2022.121608
|
[6] |
Samuel A L. Some studies in machine learning using the game of checkers. IBM J Res Dev, 1959, 3(3): 210 doi: 10.1147/rd.33.0210
|
[7] |
Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: Recent applications and prospects. Npj Comput Mater, 2017, 3: 54 doi: 10.1038/s41524-017-0056-5
|
[8] |
Correa-Baena J P, Hippalgaonkar K, van Duren J, et al. Accelerating materials development via automation, machine learning, and high-performance computing. Joule, 2018, 2(8): 1410 doi: 10.1016/j.joule.2018.05.009
|
[9] |
Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci Adv, 2018, 4(4): eaaq1566 doi: 10.1126/sciadv.aaq1566
|
[10] |
Wen C, Zhang Y, Wang C X, et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater, 2019, 170: 109 doi: 10.1016/j.actamat.2019.03.010
|
[11] |
Liu X D, Li X, He Q F, et al. Machine learning-based glass formation prediction in multicomponent alloys. Acta Mater, 2020, 201: 182 doi: 10.1016/j.actamat.2020.09.081
|
[12] |
Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, et al. The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett, 2011, 2(17): 2241 doi: 10.1021/jz200866s
|
[13] |
Hachmann J, Olivares-Amaya R, Jinich A, et al. Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry - the Harvard Clean Energy Project. Energy Environ Sci, 2014, 7(2): 698 doi: 10.1039/C3EE42756K
|
[14] |
Jain A, Ong S P, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater, 2013, 1(1): 011002 doi: 10.1063/1.4812323
|
[15] |
Saal J E, Kirklin S, Aykol M, et al. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). JOM, 2013, 65(11): 1501 doi: 10.1007/s11837-013-0755-4
|
[16] |
Kirklin S, Saal J E, Meredig B, et al. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. Npj Comput Mater, 2015, 1: 15010 doi: 10.1038/npjcompumats.2015.10
|
[17] |
Curtarolo S, Setyawan W, Wang S D, et al. AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci, 2012, 58: 227
|
[18] |
Allen F H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Cryst, 2002, B58: 380
|
[19] |
Kalidindi S R, De Graef M. Materials data science: Current status and future outlook. Annu Rev Mater Res, 2015, 45: 171 doi: 10.1146/annurev-matsci-070214-020844
|
[20] |
Kawazoe Y, Carow-Watamura U, Louzguine D V. Phase Diagrams and Physical Properties of Nonequilibrium Alloys: Subvolume C: Physical Properties of Multi-Component Amorphous Alloys. Berlin: Springer, 2019
|
[21] |
Turnbull D. Under what conditions can a glass be formed? Contemp Phys, 1969, 10(5): 473
|
[22] |
Inoue A, Zhang T, Masumoto T. Glass-forming ability of alloys. J Non Cryst Solids, 1993, 156-158: 473 doi: 10.1016/0022-3093(93)90003-G
|
[23] |
Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater, 2002, 50(13): 3501 doi: 10.1016/S1359-6454(02)00166-0
|
[24] |
Du X H, Huang J C, Liu C T, et al. New criterion of glass forming ability for bulk metallic glasses. J Appl Phys, 2007, 101(8): 086108 doi: 10.1063/1.2718286
|
[25] |
Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48(1): 279 doi: 10.1016/S1359-6454(99)00300-6
|
[26] |
Miedema A R, de Boer F R, Boom R. Model predictions for the enthalpy of formation of transition metal alloys. Calphad, 1977, 1(4): 341 doi: 10.1016/0364-5916(77)90011-6
|
[27] |
Ramakrishna Rao B, Gandhi A S, Vincent S, et al. Prediction of glass forming ability using thermodynamic parameters. Trans Indian Inst Met, 2012, 65(6): 559 doi: 10.1007/s12666-012-0215-9
|
[28] |
Mansoori G A, Carnahan N F, Starling K E, et al. Equilibrium thermodynamic properties of the mixture of hard spheres. J Chem Phys, 1971, 54(4): 1523 doi: 10.1063/1.1675048
|
[29] |
Fang S S, Xiao X S, Xia L, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non Cryst Solids, 2003, 321(1-2): 120 doi: 10.1016/S0022-3093(03)00155-8
|
[30] |
Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int, 2011, 21(6): 433 doi: 10.1016/S1002-0071(12)60080-X
|
[31] |
Angell C A. Formation of glasses from liquids and biopolymers. Science, 1995, 267(5206): 1924 doi: 10.1126/science.267.5206.1924
|
[32] |
Wang L M, Tian Y J, Liu R P. Dependence of glass forming ability on liquid fragility: Thermodynamics versus kinetics. Appl Phys Lett, 2010, 97(18): 181901 doi: 10.1063/1.3506900
|
[33] |
Mastropietro D G, Moya J A. Design of Fe-based bulk metallic glasses for maximum amorphous diameter (Dmax) using machine learning models. Comput Mater Sci, 2021, 188: 110230 doi: 10.1016/j.commatsci.2020.110230
|
[34] |
Yao Y, Sullivan T IV, Yan F, et al. Balancing data for generalizable machine learning to predict glass-forming ability of ternary alloys. Scr Mater, 2022, 209: 114366 doi: 10.1016/j.scriptamat.2021.114366
|
[35] |
Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science. Nature, 2018, 559(7715): 547 doi: 10.1038/s41586-018-0337-2
|
[36] |
Wu W, Sun Q. Applying machine learning to accelerate new materials development. Sci Sin-Phys Mech Astron, 2018, 48(10): 107001
|
[37] |
Park S, Fonseca J H, Marimuthu K P, et al. Determination of material properties of bulk metallic glass using nanoindentation and artificial neural network. Intermetallics, 2022, 144: 107492 doi: 10.1016/j.intermet.2022.107492
|
[38] |
Han G, Marimuthu K P, Lee H. Evaluation of thin film material properties using a deep nanoindentation and ANN. Mater Des, 2022, 221: 111000 doi: 10.1016/j.matdes.2022.111000
|
[39] |
Reddy G J, Kandavalli M, Saboo T, et al. Prediction of glass forming ability of bulk metallic glasses using machine learning. Integr Mater Manuf Innov, 2021, 10(4): 610 doi: 10.1007/s40192-021-00239-y
|
[40] |
Sun Y T, Bai H Y, Li M Z, et al. Machine learning approach for prediction and understanding of glass-forming ability. J Phys Chem Lett, 2017, 8(14): 3434 doi: 10.1021/acs.jpclett.7b01046
|
[41] |
Li Z, Long Z L, Lei S, et al. Predicting the glass formation of metallic glasses using machine learning approaches. Comput Mater Sci, 2021, 197: 110656 doi: 10.1016/j.commatsci.2021.110656
|
[42] |
Zhang Y X, Xing G C, Sha Z D, et al. A two-step fused machine learning approach for the prediction of glass-forming ability of metallic glasses. J Alloys Compd, 2021, 875: 160040 doi: 10.1016/j.jallcom.2021.160040
|
[43] |
Fan Z, Ma E, Falk M L. Predicting the location of shear band initiation in a metallic glass. Phys Rev Mater, 2022, 6(6): 065602 doi: 10.1103/PhysRevMaterials.6.065602
|
[44] |
Ward L, Agrawal A, Choudhary A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials. Npj Comput Mater, 2016, 2: 16028 doi: 10.1038/npjcompumats.2016.28
|
[45] |
Ward L, O'Keeffe S C, Stevick J, et al. A machine learning approach for engineering bulk metallic glass alloys. Acta Mater, 2018, 159: 102 doi: 10.1016/j.actamat.2018.08.002
|
[46] |
Schultz L E, Afflerbach B, Francis C, et al. Exploration of characteristic temperature contributions to metallic glass forming ability. Comput Mater Sci, 2021, 196: 110494 doi: 10.1016/j.commatsci.2021.110494
|
[47] |
Deng B H, Zhang Y L. Critical feature space for predicting the glass forming ability of metallic alloys revealed by machine learning. Chem Phys, 2020, 538: 110898 doi: 10.1016/j.chemphys.2020.110898
|
[48] |
Li X, Shan G C, Shek C H. Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability. J Mater Sci Technol, 2022, 103: 113 doi: 10.1016/j.jmst.2021.05.076
|
[49] |
Xiong J, Shi S Q, Zhang T Y. Machine learning prediction of glass-forming ability in bulk metallic glasses. Comput Mater Sci, 2021, 192: 110362 doi: 10.1016/j.commatsci.2021.110362
|
[50] |
Lu Z C, Chen X, Liu X J, et al. Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses. Npj Comput Mater, 2020, 6: 187 doi: 10.1038/s41524-020-00460-x
|
[51] |
McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys, 1943, 5: 115 doi: 10.1007/BF02478259
|
[52] |
Lu F, Liang Y C, Wang X Y, et al. Prediction of amorphous forming ability based on artificial neural network and convolutional neural network. Comput Mater Sci, 2022, 210: 111464 doi: 10.1016/j.commatsci.2022.111464
|
[53] |
Yu L P, Guo X X, Wang G, et al. Extracting governing system for the plastic deformation of metallic glasses using machine learning. Sci China Phys Mech Astron, 2022, 65(6): 264611 doi: 10.1007/s11433-021-1840-9
|
[54] |
Zhang T, Long Z L, Peng L, et al. Prediction of glass forming ability of bulk metallic glasses based on convolutional neural network. J Non Cryst Solids, 2022, 595: 121846 doi: 10.1016/j.jnoncrysol.2022.121846
|
[55] |
Zeng S M, Zhao Y C, Li G, et al. Atom table convolutional neural networks for an accurate prediction of compounds properties. Npj Comput Mater, 2019, 5: 84 doi: 10.1038/s41524-019-0223-y
|
[56] |
Dan Y B, Zhao Y, Li X, et al. Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. Npj Comput Mater, 2020, 6: 84 doi: 10.1038/s41524-020-00352-0
|
[57] |
Cortes C, Vapnik V. Support-vector networks. Mach Learn, 1995, 20(3): 273
|
[58] |
Gunn S R. Support vector machines for classification and regression. ISIS Tech Rep, 1998, 14(1): 5
|
[59] |
Wu Y C, Wang W H, Guan P F, et al. Identifying packing features of atoms with distinct dynamic behaviors in metallic glass by machine-learning method. Sci China Mater, 2021, 64(7): 1820 doi: 10.1007/s40843-020-1626-3
|
[60] |
Cubuk E D, Schoenholz S S, Kaxiras E, et al. Structural properties of defects in glassy liquids. J Phys Chem B, 2016, 120: 6139 doi: 10.1021/acs.jpcb.6b02144
|
[61] |
Sussman D M, Schoenholz S S, Cubuk E D, et al. Disconnecting structure and dynamics in glassy thin films. Proc Natl Acad Sci USA, 2017, 114(40): 10601 doi: 10.1073/pnas.1703927114
|