Citation: | ZHU Chenhui, XU Liujie, LIU Meijun, GUO Mingyi. Research progress on interstitial-atom-doped high-entropy alloys[J]. Chinese Journal of Engineering, 2023, 45(9): 1459-1469. doi: 10.13374/j.issn2095-9389.2022.10.24.006 |
[1] |
魏耀光, 郭剛, 李靜, 等. 難熔高熵合金在航空發動機上的應用. 航空材料學報, 2019, 39(5):82 doi: 10.11868/j.issn.1005-5053.2019.000023
Wei Y G, Guo G, Li J, et al. Application of refractory high entropy alloys on aero-engines. J Aeronaut Mater, 2019, 39(5): 82 doi: 10.11868/j.issn.1005-5053.2019.000023
|
[2] |
宗樂, 徐流杰, 羅春陽, 等. 難熔高熵合金: 制備方法與性能綜述. 工程科學學報, 2021, 43(11):1459
Zong L, Xu L J, Luo C Y, et al. Refractory high-entropy alloys: A review of preparation methods and properties. Chin J Eng, 2021, 43(11): 1459
|
[3] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
|
[4] |
Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall Mater Trans A, 2004, 35(8): 2533 doi: 10.1007/s11661-006-0234-4
|
[5] |
Lilensten L, Couzinié J P, Bourgon J, et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater Res Lett, 2017, 5(2): 110 doi: 10.1080/21663831.2016.1221861
|
[6] |
He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy. Int J Plast, 2021, 139: 102965 doi: 10.1016/j.ijplas.2021.102965
|
[7] |
Gan G Y, Ma L, Luo D M, et al. Influence of Al substitution for Sc on thermodynamic properties of HCP high entropy alloy Hf0.25Ti0.25Zr0.25Sc0.25?xAlx from first-principles investigation. Phys B Condens Matter, 2020, 593: 412272 doi: 10.1016/j.physb.2020.412272
|
[8] |
Kim I H, Oh H S, Lee K S, et al. Optimization of conflicting properties via engineering compositional complexity in refractory high entropy alloys. Scr Mater, 2021, 199: 113839 doi: 10.1016/j.scriptamat.2021.113839
|
[9] |
Shahmir H, Asghari-Rad P, Mehranpour M S, et al. Evidence of FCC to HCP and BCC-martensitic transformations in a CoCrFeNiMn high-entropy alloy by severe plastic deformation. Mater Sci Eng A, 2021, 807: 140875 doi: 10.1016/j.msea.2021.140875
|
[10] |
常曉雪. FCC結構高熵合金的成分、組織及力學性能研究[學位論文]. 大連: 大連理工大學, 2018
Chang X X. Study on Composition, Structure and Mechanical Properties of FCC High Entropy Alloy [Dissertation]. Dalian: Dalian University of Technology, 2018
|
[11] |
Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J Alloys Compd, 2010, 497(1-2): 52 doi: 10.1016/j.jallcom.2010.03.074
|
[12] |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1 doi: 10.1016/j.pmatsci.2013.10.001
|
[13] |
Ren B, Liu Z X, Li D M, et al. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J Alloys Compd, 2010, 493(1-2): 148 doi: 10.1016/j.jallcom.2009.12.183
|
[14] |
孫日偉, 張偉強, 付華萌. 固態滲鋁對 AlCoCrFeNi 高熵合金組織的影響. 金屬熱處理, 2015, 40(9):160
Sun R W, Zhang W Q, Fu H M. Effect of solid aluminization on microstructure of AlCoCrFeNi high-entropy alloy. Heat Treat Met, 2015, 40(9): 160
|
[15] |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater, 2013, 61(13): 4887 doi: 10.1016/j.actamat.2013.04.058
|
[16] |
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater, 2011, 59(16): 6308 doi: 10.1016/j.actamat.2011.06.041
|
[17] |
黃晉培, 章奇, 李忠文, 等. T10鋼表面FeMoCoNiCrTix 高熵合金熔覆層組織及性能. 有色金屬科學與工程, 2020, 11(3):39
Huang J P, Zhang Q, Li Z W, et al. Study on the microstructure and properties of FeMoCoNiCrTix high-entropy alloy cladding layer on T10 steel. Nonferrous Met Sci Eng, 2020, 11(3): 39
|
[18] |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004
|
[19] |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun, 2016, 7: 13564 doi: 10.1038/ncomms13564
|
[20] |
Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros Sci, 2010, 52(10): 3481 doi: 10.1016/j.corsci.2010.06.025
|
[21] |
Yang F S, Wang J, Zhang Y, et al. Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review. Int J Hydrog Energy, 2022, 47(21): 11236 doi: 10.1016/j.ijhydene.2022.01.141
|
[22] |
胡賡祥, 蔡珣, 戎詠華. 材料科學基礎. 上海: 上海交通大學出版社, 2010
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science. Shanghai: Shanghai Jiaotong University Press, 2010
|
[23] |
Saenarjhan N, Kang J H, Kim S J. Effects of carbon and nitrogen on austenite stability and tensile deformation behavior of 15Cr–15Mn–4Ni based austenitic stainless steels. Mater Sci Eng A, 2019, 742: 608 doi: 10.1016/j.msea.2018.11.048
|
[24] |
Conrad H. Effect of interstitial solutes on the strength and ductility of titanium. Prog Mater Sci, 1981, 26(2-4): 123 doi: 10.1016/0079-6425(81)90001-3
|
[25] |
洪達, 王和斌, 侯隴剛, 等. 間隙原子對高熵合金組織及性能影響的研究現狀. 有色金屬科學與工程, 2020, 11(6):71 doi: 10.13264/j.cnki.ysjskx.2020.06.010
Hong D, Wang H B, Hou L G, et al. Research progress of effect of interstitial atoms on high-entropy alloy's microstructure and properties. Nonferrous Met Sci Eng, 2020, 11(6): 71 doi: 10.13264/j.cnki.ysjskx.2020.06.010
|
[26] |
Gutiérrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater, 2012, 60(16): 5791 doi: 10.1016/j.actamat.2012.07.018
|
[27] |
Gutiérrez-Urrutia I, Raabe D. Microbanding mechanism in an Fe–Mn–C high-Mn twinning-induced plasticity steel. Scr Mater, 2013, 69(1): 53 doi: 10.1016/j.scriptamat.2013.03.010
|
[28] |
馬一墨. 間隙碳化物對CoCrFeNiV0.5C系高熵合金組織與性能的影響[學位論文]. 秦皇島: 燕山大學, 2020
Ma Y M. Effect of Intersitial Carbide on Microstructure and Properties of CoCrFeNiV0.5C High Entropy Alloy [Dissertation]. Qinhuangdao: Yanshan University, 2020
|
[29] |
陳揚. 碳化物陶瓷顆粒對Fe50Mn30Co10Cr10高熵合金基復合材料的微觀組織及性能影響[學位論文]. 重慶: 重慶理工大學, 2021
Chen Y. Effect of Carbide Ceramic Particles on Microstructure and Properties of Fe50Mn30Co10Cr10 High Entropy Alloy Matrix Composites [Dissertation] Chongqing: Chongqing University of Technology, 2021
|
[30] |
武士崳. 碳元素對 NbTaW0.5M系難熔高熵合金組織性能影響的研究[學位論文]. 大連: 大連理工大學, 2021
Wu S Y. Microstructure and Properties of NbTaW0.5M Refractory High Entropy Alloys by Carbon Element [Dissertation]. Dalian: Dalian University of Technology, 2021
|
[31] |
Cheng H, Chen W, Liu X Q, et al. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater Sci Eng A, 2018, 719: 192 doi: 10.1016/j.msea.2018.02.040
|
[32] |
白莉, 王宇哲, 呂煜坤, 等. 碳對無Co高熵合金Fe40Mn30Ni10Cr10Al10組織以及力學性能的影響. 材料導報, 2020, 34(17):17072 doi: 10.11896/cldb.20050196
Bai L, Wang Y Z, Lv Y K, et al. Effect of carbon on microstructures and mechanical properties of Co-free Fe40Mn30Ni10Cr10Al10 high-entropy alloy. Mater Rev, 2020, 34(17): 17072 doi: 10.11896/cldb.20050196
|
[33] |
Chen L B, Wei R, Tang K, et al. Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility. Mater Sci Eng A, 2018, 716: 150 doi: 10.1016/j.msea.2018.01.045
|
[34] |
Zhang L, Song R K, Qu G X, et al. Effect of nitrogen on microstructure and mechanical properties of CrMnFeVTi6 high entropy alloy. Trans Nonferrous Met Soc China, 2021, 31(8): 2415 doi: 10.1016/S1003-6326(21)65663-7
|
[35] |
張長亮, 盧一平. 氮元素對Ti2ZrHfV0.5Mo0. 2高熵合金組織及力學性能的影響. 材料導報, 2019, 33(增刊 1):329
Zhang C L, Lu Y P. Effect of nitrogen element on microstructure and mechanical properties of Ti2ZrHfV0.5Mo0. 2 high entropy alloy. Mater Rev, 2019, 33(Suppl 1): 329
|
[36] |
Xie Y C, Cheng H, Tang Q H, et al. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics, 2018, 93: 228 doi: 10.1016/j.intermet.2017.09.013
|
[37] |
Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Newyork: John Wiley & Sons, 2003
|
[38] |
Yan M, Xu W, Dargusch M S, et al. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall, 2014, 57(4): 251 doi: 10.1179/1743290114Y.0000000108
|
[39] |
Moffatt W G. The Handbook of Binary Phase Diagrams. New York: Genium Pub, Schenectady, 1984
|
[40] |
Barkia B, Doquet V, Couzinie J P, et al. In situ monitoring of the deformation mechanisms in titanium with different oxygen contents. Mater Sci Eng A, 2015, 636: 91 doi: 10.1016/j.msea.2015.03.044
|
[41] |
Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium. Science, 2015, 347(6222): 635 doi: 10.1126/science.1260485
|
[42] |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546 doi: 10.1038/s41586-018-0685-y
|
[43] |
Ritchie R O. The conflicts between strength and toughness. Nat Mater, 2011, 10(11): 817 doi: 10.1038/nmat3115
|
[44] |
Wu Y D, Wang Q J, Lin D Y, et al. Phase stability and deformation behavior of TiZrHfNbO high-entropy alloys. Front Mater, 2020, 7: 589052 doi: 10.3389/fmats.2020.589052
|
[45] |
姜越, 李秀明, 周廣泰, 等. B含量對CrFeCoNiTi0.6高熵合金顯微組織和性能的影響. 粉末冶金材料科學與工程, 2020, 25(5):403 doi: 10.3969/j.issn.1673-0224.2020.05.007
Jiang Y, Li X M, Zhou G T, et al. Effects of B content on microstructure and properties of CrFeCoNiTi0.6 high-entropy alloy. Mater Sci Eng Powder Metall, 2020, 25(5): 403 doi: 10.3969/j.issn.1673-0224.2020.05.007
|
[46] |
徐琴, 王琪, 李娟, 等. B對NbMoTiVSi0.2難熔高熵合金組織與力學性能的影響. 特種鑄造及有色合金, 2022, 42(3):292
Xu Q, Wang Q, Li J, et al. Effects of boron on the microstructure and mechanical properties of NbMoTiVSi0.2 refractory high entropy alloys. Special Casting Nonferrous Alloys, 2022, 42(3): 292
|
[47] |
Liu X T, Lei W B, Ma L J, et al. Effect of boron on the microstructure, phase assemblage and wear properties of Al0.5CoCrCuFeNi high-entropy alloy. Rare Met Mater Eng, 2016, 45(9): 2201 doi: 10.1016/S1875-5372(17)30003-6
|
[48] |
彭振, 劉寧, 吳朋慧, 等. 硼元素對 CoCrCu0.5FeNi 高熵合金組織和性能的影響. 金屬熱處理, 2017, 42(6):153
Peng Z, Liu N, Wu P H, et al. Effect of boron addition on microstructure and properties of CoCrCu0.5FeNi high entropy alloy. Heat Treat Met, 2017, 42(6): 153
|
[49] |
Qin M D, Yan Q Z, Liu Y, et al. A new class of high-entropy M3B4 borides. J Adv Ceram, 2021, 10(1): 166 doi: 10.1007/s40145-020-0438-x
|
[50] |
Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy. Int J Refract Met Hard Mater, 2021, 100: 105636 doi: 10.1016/j.ijrmhm.2021.105636
|
[51] |
侯麗麗, 郭強, 高雨雨, 等. 硼對AlFeCoNi高熵合金組織和高溫氧化性能的影響. 稀有金屬材料與工程, 2021, 50(9):3342
Hou L L, Guo Q, Gao Y Y, et al. Effect of boron on microstructure and oxidation properties of AlFeCoNi high entropy alloy. Rare Met Mater Eng, 2021, 50(9): 3342
|
[52] |
要玉宏, 梁霄羽, 金耀華, 等. 硼對AlMo0.5NbTa0.5TiZr難熔高熵合金組織和高溫氧化性能的影響. 表面技術, 2020, 49(2):235
Yao Y H, Liang X Y, Jin Y H, et al. Effect of B addition on microstructure and high temperature oxidation resistance of AlMo0.5NbTa0.5TiZr refractory high-entropy alloys. Surf Technol, 2020, 49(2): 235
|
[53] |
趙旭, 齊民, 王鳳庭, 等. 微量硼對CuZnAl形狀記憶合金性能的影響. 材料科學進展, 1990, 4(6):514
Zhao X, Qi M, Wang F T, et al. Effect of small amount of boron on the property of CuZnAl shape memory alloy. Chin J Mater Res, 1990, 4(6): 514
|
[54] |
Seol J B, BaeJ W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater, 2018, 151: 366 doi: 10.1016/j.actamat.2018.04.004
|
[55] |
楊顏如, 張祎梣, 李嘉雯, 等. 高熵合金化研究現狀. 冶金工程, 2021(1):9
Yang Y R, Zhang Y C, Li J W, et al. Research status of high entropy alloying. Metall Eng, 2021(1): 9
|
[56] |
劉怡. 間隙原子對Fe50Mn30Co10Cr10高熵合金微觀組織及力學性能的影響[學位論文]. 重慶: 重慶理工大學, 2021
Liu Y. Effect of Interstitial Atoms on Microstructure and Mechanical Properties of Fe50Mn30Co10Cr10 High Entropy Alloy [Dissertation]. Chongqing: Chongqing University of Technology, 2021
|
[57] |
侯麗麗, 梁霄羽, 要玉宏, 等. B 含量對FeCrCoNiMn高熵合金組織及力學性能的影響. 稀有金屬材料與工程, 2018, 47(10):3203
Hou L L, Liang X Y, Yao Y H, et al. Effect of B content on microstructure and mechanical properties of FeCrCoNiMn high entropy alloy. Rare Met Mater Eng, 2018, 47(10): 3203
|