<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
ZHU Chenhui, XU Liujie, LIU Meijun, GUO Mingyi. Research progress on interstitial-atom-doped high-entropy alloys[J]. Chinese Journal of Engineering, 2023, 45(9): 1459-1469. doi: 10.13374/j.issn2095-9389.2022.10.24.006
Citation: ZHU Chenhui, XU Liujie, LIU Meijun, GUO Mingyi. Research progress on interstitial-atom-doped high-entropy alloys[J]. Chinese Journal of Engineering, 2023, 45(9): 1459-1469. doi: 10.13374/j.issn2095-9389.2022.10.24.006

Research progress on interstitial-atom-doped high-entropy alloys

doi: 10.13374/j.issn2095-9389.2022.10.24.006
More Information
  • Corresponding author: E-mail: wmxlj@126.com
  • Received Date: 2022-10-24
    Available Online: 2023-01-12
  • Publish Date: 2023-09-25
  • High-entropy alloy has become a research hotspot because of its unique microstructure and mechanical properties. The appearance of high-entropy alloy breaks the design concept of traditional alloy with one or two elements as the main element and other elements as the auxiliary element, providing a broader space for the development of new materials. Conventional alloys are generally optimized by four different strengthening methods, as are high-entropy alloys consisting of five or more elements. Appropriately doped interstitial atoms with small atomic sizes (such as C, B, O, and N) can dissolve into crystal interstice, combine with alloying elements to form a fine microstructure and dispersion-strengthened phase, and improve the properties of high-entropy alloy by reducing the layer fault energy and changing the dislocation motion mode. Therefore, exploring the effect of interstitial atom doping on the properties of high-entropy alloys is conducive to promoting the application of high-entropy alloys in different material fields. The effects of the interstitial atoms C, N, O, and B on the microstructures and properties of high-entropy alloys are analyzed. The contents of four kinds of interstitial atoms and their effects on the microstructures and properties of high-entropy alloys are summarized. Numerous studies have shown that doping interstitial atoms can not only regulate the structural composition of the phase (i.e., promote/inhibit the phase transformation and precipitate the second phase particles) in high-entropy alloy systems. The deformation mechanism, i.e., TWIP (Twinning induced plasticity) and TRIP(Transformation induced plasticity) effects, can also be changed to strengthen and toughen the material. Its effective utilization can not only broaden the design idea of high-entropy alloy but also effectively reduce the preparation cost of aviation materials. Finally, a new direction in microstructure design of high-strength, high-toughness, and high-entropy alloys containing interstitial atoms is proposed to (1) understand the doping mechanism of different types of high-entropy alloys and establish a solution-strengthening model more suitable for high-entropy alloy systems and (2) determine the appropriate interstitial atoms and doping amount to adjust the microstructures and mechanical properties of high-entropy alloys. The study and design of high-entropy alloys doped with different interstitial atoms are expected to reveal the effects of different interstitial atoms on the phase structure, deformation mechanism, and mechanical properties, which have important scientific and engineering practical significance.

     

  • loading
  • [1]
    魏耀光, 郭剛, 李靜, 等. 難熔高熵合金在航空發動機上的應用. 航空材料學報, 2019, 39(5):82 doi: 10.11868/j.issn.1005-5053.2019.000023

    Wei Y G, Guo G, Li J, et al. Application of refractory high entropy alloys on aero-engines. J Aeronaut Mater, 2019, 39(5): 82 doi: 10.11868/j.issn.1005-5053.2019.000023
    [2]
    宗樂, 徐流杰, 羅春陽, 等. 難熔高熵合金: 制備方法與性能綜述. 工程科學學報, 2021, 43(11):1459

    Zong L, Xu L J, Luo C Y, et al. Refractory high-entropy alloys: A review of preparation methods and properties. Chin J Eng, 2021, 43(11): 1459
    [3]
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
    [4]
    Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall Mater Trans A, 2004, 35(8): 2533 doi: 10.1007/s11661-006-0234-4
    [5]
    Lilensten L, Couzinié J P, Bourgon J, et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater Res Lett, 2017, 5(2): 110 doi: 10.1080/21663831.2016.1221861
    [6]
    He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy. Int J Plast, 2021, 139: 102965 doi: 10.1016/j.ijplas.2021.102965
    [7]
    Gan G Y, Ma L, Luo D M, et al. Influence of Al substitution for Sc on thermodynamic properties of HCP high entropy alloy Hf0.25Ti0.25Zr0.25Sc0.25?xAlx from first-principles investigation. Phys B Condens Matter, 2020, 593: 412272 doi: 10.1016/j.physb.2020.412272
    [8]
    Kim I H, Oh H S, Lee K S, et al. Optimization of conflicting properties via engineering compositional complexity in refractory high entropy alloys. Scr Mater, 2021, 199: 113839 doi: 10.1016/j.scriptamat.2021.113839
    [9]
    Shahmir H, Asghari-Rad P, Mehranpour M S, et al. Evidence of FCC to HCP and BCC-martensitic transformations in a CoCrFeNiMn high-entropy alloy by severe plastic deformation. Mater Sci Eng A, 2021, 807: 140875 doi: 10.1016/j.msea.2021.140875
    [10]
    常曉雪. FCC結構高熵合金的成分、組織及力學性能研究[學位論文]. 大連: 大連理工大學, 2018

    Chang X X. Study on Composition, Structure and Mechanical Properties of FCC High Entropy Alloy [Dissertation]. Dalian: Dalian University of Technology, 2018
    [11]
    Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J Alloys Compd, 2010, 497(1-2): 52 doi: 10.1016/j.jallcom.2010.03.074
    [12]
    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1 doi: 10.1016/j.pmatsci.2013.10.001
    [13]
    Ren B, Liu Z X, Li D M, et al. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J Alloys Compd, 2010, 493(1-2): 148 doi: 10.1016/j.jallcom.2009.12.183
    [14]
    孫日偉, 張偉強, 付華萌. 固態滲鋁對 AlCoCrFeNi 高熵合金組織的影響. 金屬熱處理, 2015, 40(9):160

    Sun R W, Zhang W Q, Fu H M. Effect of solid aluminization on microstructure of AlCoCrFeNi high-entropy alloy. Heat Treat Met, 2015, 40(9): 160
    [15]
    Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater, 2013, 61(13): 4887 doi: 10.1016/j.actamat.2013.04.058
    [16]
    Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater, 2011, 59(16): 6308 doi: 10.1016/j.actamat.2011.06.041
    [17]
    黃晉培, 章奇, 李忠文, 等. T10鋼表面FeMoCoNiCrTix 高熵合金熔覆層組織及性能. 有色金屬科學與工程, 2020, 11(3):39

    Huang J P, Zhang Q, Li Z W, et al. Study on the microstructure and properties of FeMoCoNiCrTix high-entropy alloy cladding layer on T10 steel. Nonferrous Met Sci Eng, 2020, 11(3): 39
    [18]
    Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004
    [19]
    Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun, 2016, 7: 13564 doi: 10.1038/ncomms13564
    [20]
    Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros Sci, 2010, 52(10): 3481 doi: 10.1016/j.corsci.2010.06.025
    [21]
    Yang F S, Wang J, Zhang Y, et al. Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review. Int J Hydrog Energy, 2022, 47(21): 11236 doi: 10.1016/j.ijhydene.2022.01.141
    [22]
    胡賡祥, 蔡珣, 戎詠華. 材料科學基礎. 上海: 上海交通大學出版社, 2010

    Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science. Shanghai: Shanghai Jiaotong University Press, 2010
    [23]
    Saenarjhan N, Kang J H, Kim S J. Effects of carbon and nitrogen on austenite stability and tensile deformation behavior of 15Cr–15Mn–4Ni based austenitic stainless steels. Mater Sci Eng A, 2019, 742: 608 doi: 10.1016/j.msea.2018.11.048
    [24]
    Conrad H. Effect of interstitial solutes on the strength and ductility of titanium. Prog Mater Sci, 1981, 26(2-4): 123 doi: 10.1016/0079-6425(81)90001-3
    [25]
    洪達, 王和斌, 侯隴剛, 等. 間隙原子對高熵合金組織及性能影響的研究現狀. 有色金屬科學與工程, 2020, 11(6):71 doi: 10.13264/j.cnki.ysjskx.2020.06.010

    Hong D, Wang H B, Hou L G, et al. Research progress of effect of interstitial atoms on high-entropy alloy's microstructure and properties. Nonferrous Met Sci Eng, 2020, 11(6): 71 doi: 10.13264/j.cnki.ysjskx.2020.06.010
    [26]
    Gutiérrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater, 2012, 60(16): 5791 doi: 10.1016/j.actamat.2012.07.018
    [27]
    Gutiérrez-Urrutia I, Raabe D. Microbanding mechanism in an Fe–Mn–C high-Mn twinning-induced plasticity steel. Scr Mater, 2013, 69(1): 53 doi: 10.1016/j.scriptamat.2013.03.010
    [28]
    馬一墨. 間隙碳化物對CoCrFeNiV0.5C系高熵合金組織與性能的影響[學位論文]. 秦皇島: 燕山大學, 2020

    Ma Y M. Effect of Intersitial Carbide on Microstructure and Properties of CoCrFeNiV0.5C High Entropy Alloy [Dissertation]. Qinhuangdao: Yanshan University, 2020
    [29]
    陳揚. 碳化物陶瓷顆粒對Fe50Mn30Co10Cr10高熵合金基復合材料的微觀組織及性能影響[學位論文]. 重慶: 重慶理工大學, 2021

    Chen Y. Effect of Carbide Ceramic Particles on Microstructure and Properties of Fe50Mn30Co10Cr10 High Entropy Alloy Matrix Composites [Dissertation] Chongqing: Chongqing University of Technology, 2021
    [30]
    武士崳. 碳元素對 NbTaW0.5M系難熔高熵合金組織性能影響的研究[學位論文]. 大連: 大連理工大學, 2021

    Wu S Y. Microstructure and Properties of NbTaW0.5M Refractory High Entropy Alloys by Carbon Element [Dissertation]. Dalian: Dalian University of Technology, 2021
    [31]
    Cheng H, Chen W, Liu X Q, et al. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater Sci Eng A, 2018, 719: 192 doi: 10.1016/j.msea.2018.02.040
    [32]
    白莉, 王宇哲, 呂煜坤, 等. 碳對無Co高熵合金Fe40Mn30Ni10Cr10Al10組織以及力學性能的影響. 材料導報, 2020, 34(17):17072 doi: 10.11896/cldb.20050196

    Bai L, Wang Y Z, Lv Y K, et al. Effect of carbon on microstructures and mechanical properties of Co-free Fe40Mn30Ni10Cr10Al10 high-entropy alloy. Mater Rev, 2020, 34(17): 17072 doi: 10.11896/cldb.20050196
    [33]
    Chen L B, Wei R, Tang K, et al. Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility. Mater Sci Eng A, 2018, 716: 150 doi: 10.1016/j.msea.2018.01.045
    [34]
    Zhang L, Song R K, Qu G X, et al. Effect of nitrogen on microstructure and mechanical properties of CrMnFeVTi6 high entropy alloy. Trans Nonferrous Met Soc China, 2021, 31(8): 2415 doi: 10.1016/S1003-6326(21)65663-7
    [35]
    張長亮, 盧一平. 氮元素對Ti2ZrHfV0.5Mo0. 2高熵合金組織及力學性能的影響. 材料導報, 2019, 33(增刊 1):329

    Zhang C L, Lu Y P. Effect of nitrogen element on microstructure and mechanical properties of Ti2ZrHfV0.5Mo0. 2 high entropy alloy. Mater Rev, 2019, 33(Suppl 1): 329
    [36]
    Xie Y C, Cheng H, Tang Q H, et al. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics, 2018, 93: 228 doi: 10.1016/j.intermet.2017.09.013
    [37]
    Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Newyork: John Wiley & Sons, 2003
    [38]
    Yan M, Xu W, Dargusch M S, et al. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall, 2014, 57(4): 251 doi: 10.1179/1743290114Y.0000000108
    [39]
    Moffatt W G. The Handbook of Binary Phase Diagrams. New York: Genium Pub, Schenectady, 1984
    [40]
    Barkia B, Doquet V, Couzinie J P, et al. In situ monitoring of the deformation mechanisms in titanium with different oxygen contents. Mater Sci Eng A, 2015, 636: 91 doi: 10.1016/j.msea.2015.03.044
    [41]
    Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium. Science, 2015, 347(6222): 635 doi: 10.1126/science.1260485
    [42]
    Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546 doi: 10.1038/s41586-018-0685-y
    [43]
    Ritchie R O. The conflicts between strength and toughness. Nat Mater, 2011, 10(11): 817 doi: 10.1038/nmat3115
    [44]
    Wu Y D, Wang Q J, Lin D Y, et al. Phase stability and deformation behavior of TiZrHfNbO high-entropy alloys. Front Mater, 2020, 7: 589052 doi: 10.3389/fmats.2020.589052
    [45]
    姜越, 李秀明, 周廣泰, 等. B含量對CrFeCoNiTi0.6高熵合金顯微組織和性能的影響. 粉末冶金材料科學與工程, 2020, 25(5):403 doi: 10.3969/j.issn.1673-0224.2020.05.007

    Jiang Y, Li X M, Zhou G T, et al. Effects of B content on microstructure and properties of CrFeCoNiTi0.6 high-entropy alloy. Mater Sci Eng Powder Metall, 2020, 25(5): 403 doi: 10.3969/j.issn.1673-0224.2020.05.007
    [46]
    徐琴, 王琪, 李娟, 等. B對NbMoTiVSi0.2難熔高熵合金組織與力學性能的影響. 特種鑄造及有色合金, 2022, 42(3):292

    Xu Q, Wang Q, Li J, et al. Effects of boron on the microstructure and mechanical properties of NbMoTiVSi0.2 refractory high entropy alloys. Special Casting Nonferrous Alloys, 2022, 42(3): 292
    [47]
    Liu X T, Lei W B, Ma L J, et al. Effect of boron on the microstructure, phase assemblage and wear properties of Al0.5CoCrCuFeNi high-entropy alloy. Rare Met Mater Eng, 2016, 45(9): 2201 doi: 10.1016/S1875-5372(17)30003-6
    [48]
    彭振, 劉寧, 吳朋慧, 等. 硼元素對 CoCrCu0.5FeNi 高熵合金組織和性能的影響. 金屬熱處理, 2017, 42(6):153

    Peng Z, Liu N, Wu P H, et al. Effect of boron addition on microstructure and properties of CoCrCu0.5FeNi high entropy alloy. Heat Treat Met, 2017, 42(6): 153
    [49]
    Qin M D, Yan Q Z, Liu Y, et al. A new class of high-entropy M3B4 borides. J Adv Ceram, 2021, 10(1): 166 doi: 10.1007/s40145-020-0438-x
    [50]
    Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy. Int J Refract Met Hard Mater, 2021, 100: 105636 doi: 10.1016/j.ijrmhm.2021.105636
    [51]
    侯麗麗, 郭強, 高雨雨, 等. 硼對AlFeCoNi高熵合金組織和高溫氧化性能的影響. 稀有金屬材料與工程, 2021, 50(9):3342

    Hou L L, Guo Q, Gao Y Y, et al. Effect of boron on microstructure and oxidation properties of AlFeCoNi high entropy alloy. Rare Met Mater Eng, 2021, 50(9): 3342
    [52]
    要玉宏, 梁霄羽, 金耀華, 等. 硼對AlMo0.5NbTa0.5TiZr難熔高熵合金組織和高溫氧化性能的影響. 表面技術, 2020, 49(2):235

    Yao Y H, Liang X Y, Jin Y H, et al. Effect of B addition on microstructure and high temperature oxidation resistance of AlMo0.5NbTa0.5TiZr refractory high-entropy alloys. Surf Technol, 2020, 49(2): 235
    [53]
    趙旭, 齊民, 王鳳庭, 等. 微量硼對CuZnAl形狀記憶合金性能的影響. 材料科學進展, 1990, 4(6):514

    Zhao X, Qi M, Wang F T, et al. Effect of small amount of boron on the property of CuZnAl shape memory alloy. Chin J Mater Res, 1990, 4(6): 514
    [54]
    Seol J B, BaeJ W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater, 2018, 151: 366 doi: 10.1016/j.actamat.2018.04.004
    [55]
    楊顏如, 張祎梣, 李嘉雯, 等. 高熵合金化研究現狀. 冶金工程, 2021(1):9

    Yang Y R, Zhang Y C, Li J W, et al. Research status of high entropy alloying. Metall Eng, 2021(1): 9
    [56]
    劉怡. 間隙原子對Fe50Mn30Co10Cr10高熵合金微觀組織及力學性能的影響[學位論文]. 重慶: 重慶理工大學, 2021

    Liu Y. Effect of Interstitial Atoms on Microstructure and Mechanical Properties of Fe50Mn30Co10Cr10 High Entropy Alloy [Dissertation]. Chongqing: Chongqing University of Technology, 2021
    [57]
    侯麗麗, 梁霄羽, 要玉宏, 等. B 含量對FeCrCoNiMn高熵合金組織及力學性能的影響. 稀有金屬材料與工程, 2018, 47(10):3203

    Hou L L, Liang X Y, Yao Y H, et al. Effect of B content on microstructure and mechanical properties of FeCrCoNiMn high entropy alloy. Rare Met Mater Eng, 2018, 47(10): 3203
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (269) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164