Citation: | XUE Shan, WANG Yabo, Lü Qiongying, CAO Guohua. Anti-occlusion target detection algorithm for anti-UAV system based on YOLOX-drone[J]. Chinese Journal of Engineering, 2023, 45(9): 1539-1549. doi: 10.13374/j.issn2095-9389.2022.10.24.004 |
[1] |
薛珊, 李廣青, 呂瓊瑩, 等. 基于卷積神經網絡的反無人機系統聲音識別方法. 工程科學學報, 2020, 42(11):1516
Xue S, Li G Q, Lü Q Y, et al. Sound recognition method of an anti-UAV system based on a convolutional neural network. Chin J Eng, 2020, 42(11): 1516
|
[2] |
陳青全, 豐志偉, 張國斌, 等. 反無人機繩網捕獲系統的動力學建模與仿真. 國防科技大學學報, 2022, 44(2):9 doi: 10.11887/j.cn.202202002
Chen Q Q, Feng Z W, Zhang G B, et al. Dynamic modeling and simulation of anti-UAV tethered-net capture system. J Natl Univ Def Technol, 2022, 44(2): 9 doi: 10.11887/j.cn.202202002
|
[3] |
薛珊, 衛立煒, 顧宸瑜, 等. 采用混合域注意力機制的無人機識別方法. 西安交通大學學報, http://kns.cnki.net/kcms/detail/61.1069.t.20220701.1417.004.html
Xue S, Wei L W, Gu C Y, et al. A recognition method for drone based on mixed domain attention mechanism. J Xi'an Jiaotong Univ, http://kns.cnki.net/kcms/detail/61.1069.t.20220701.1417.004.html
|
[4] |
羅俊海, 王芝燕. 無人機探測與對抗技術發展及應用綜述. 控制與決策, 2022, 37(3):530
Luo J H, Wang Z Y. A review of development and application of UAV detection and counter technology. Control Decis, 2022, 37(3): 530
|
[5] |
王曉. 視頻中無人機的實時檢測與跟蹤算法研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2019
Wang X. Research on Real-time Detection and Tracking Algorithm of UAV in Video [Dissertation]. Harbin: Harbin Engineering University, 2019
|
[6] |
邵盼愉. 基于視覺的無人機入侵檢測與跟蹤系統設計與實現[學位論文]. 杭州: 浙江大學, 2018
Shao P Y. Design and Implementation of Vision Based Drone Intrusion and Tracking System [Dissertation]. Hangzhou: Zhejiang University, 2018
|
[7] |
趙輝, 李志偉, 張天琪. 基于注意力機制的單發多框檢測器算法. 電子與信息學報, 2021, 43(7):2096 doi: 10.11999/JEIT200304
Zhao H, Li Z W, Zhang T Q. Attention based single shot multibox detector. J Electron &Inf Technol, 2021, 43(7): 2096 doi: 10.11999/JEIT200304
|
[8] |
陶磊, 洪韜, 鈔旭. 基于YOLOv3的無人機識別與定位追蹤. 工程科學學報, 2020, 42(4):463
Tao L, Hong T, Chao X. Drone identification and location tracking based on YOLOv3. Chin J Eng, 2020, 42(4): 463
|
[9] |
崔艷鵬, 王元皓, 胡建偉. 一種改進YOLOv3的動態小目標檢測方法. 西安電子科技大學學報, 2020, 47(3):1 doi: 10.19665/j.issn1001-2400.2020.03.001
Cui Y P, Wang Y H, Hu J W. Detection method for a dynamic small target using the improved YOLOv3. J Xidian Univ, 2020, 47(3): 1 doi: 10.19665/j.issn1001-2400.2020.03.001
|
[10] |
張瑞鑫, 黎寧, 張夏夏, 等. 基于優化CenterNet的低空無人機檢測方法. 北京航空航天大學學報, 2022, 48(11):2335
Zhang R X, Li N, Zhang X X, et al. Low-altitude UAV detection method based on optimized CenterNet. J Beijing Univ Aeronaut Astronaut, 2022, 48(11): 2335
|
[11] |
Ge Z, Liu S T, Wang F, et al. Yolox: Exceeding yolo series in 2021 [J/OL]. arXir preprint online (2021-8-6) [2022-10-21]. https://arxiv.org/abs/2107.08430
|
[12] |
Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, 2021: 13708
|
[13] |
Duan K W, Bai S, Xie L X, et al. Centernet: Keypoint triplets for object detection // Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, 2019: 6568
|
[14] |
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. arXir preprint online (2020-4-23) [2022-10-21]. https://arxiv.org/abs/2004.10934
|
[15] |
Zhang H Y, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization [J/OL]. arXir preprint online (2018-4-27) [2022-10-21]. https://arxiv.org/abs/1710.09412
|
[16] |
Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, 2020: 1571
|
[17] |
He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904 doi: 10.1109/TPAMI.2015.2389824
|
[18] |
Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 8759
|
[19] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 936
|
[20] |
陳勇, 劉曦, 劉煥淋. 基于特征通道和空間聯合注意機制的遮擋行人檢測方法. 電子與信息學報, 2020, 42(6):1486 doi: 10.11999/JEIT190606
Chen Y, Liu X, Liu H L. Occluded pedestrian detection based on joint attention mechanism of channel-wise and spatial information. J Electron &Inf Technol, 2020, 42(6): 1486 doi: 10.11999/JEIT190606
|
[21] |
Liu S T, Huang D, Wang Y H. Learning spatial fusion for single-shot object detection [J/OL]. arXir preprint online (2019-11-25) [2022-10-21]. https://arxiv.org/abs/1911.09516
|
[22] |
Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module // The 15th European Conference on Computer Vision. Munich, 2018: 3
|
[23] |
Zhang S S, Chen D, Yang J, et al. Guided attention in CNNs for occluded pedestrian detection and re-identification. Int J Comput Vis, 2021, 129(6): 1875 doi: 10.1007/s11263-021-01461-z
|
[24] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
|
[25] |
Wang Q L, Wu B G, Zhu P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Seattle, 2020: 11531
|
[26] |
Zhou B L, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 2921
|
[27] |
Zhao J, Zhang J S, Li D D, et al. Vision-based anti-UAV detection and tracking. IEEE Trans Intell Transp Syst, 2022, 23(12): 25323 doi: 10.1109/TITS.2022.3177627
|