<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
XUE Shan, WANG Yabo, Lü Qiongying, CAO Guohua. Anti-occlusion target detection algorithm for anti-UAV system based on YOLOX-drone[J]. Chinese Journal of Engineering, 2023, 45(9): 1539-1549. doi: 10.13374/j.issn2095-9389.2022.10.24.004
Citation: XUE Shan, WANG Yabo, Lü Qiongying, CAO Guohua. Anti-occlusion target detection algorithm for anti-UAV system based on YOLOX-drone[J]. Chinese Journal of Engineering, 2023, 45(9): 1539-1549. doi: 10.13374/j.issn2095-9389.2022.10.24.004

Anti-occlusion target detection algorithm for anti-UAV system based on YOLOX-drone

doi: 10.13374/j.issn2095-9389.2022.10.24.004
More Information
  • Corresponding author: E-mail:1660348815@qq.com
  • Received Date: 2022-10-24
    Available Online: 2022-12-08
  • Publish Date: 2023-09-25
  • With the development and advancement of science and technology, the development and innovation of unmanned aerial vehicle (UAV) technology and products have brought great convenience to people in the fields of aerial photography, plant protection, electric cruise, and so on, but the development of UAVs also brings a series of management problems. Therefore, as a key part of the anti-UAV system, research into effective UAV detection is a pressing issue that must be addressed. In public environments such as parks, stadiums, and schools, the detection and tracking of UAV targets become more difficult due to their inherent characteristics and environmental factors. For example, under the occlusion of background interferences such as trees, buildings, and light, the target detection algorithm is unable to extract the effective features of the UAV target, resulting in target detection failure. It is of great significance to study the anti-occlusion target detection and tracking algorithm of anti-UAV systems for situations where UAVs cannot be successfully detected due to occlusion. This study proposes an improved anti-UAV system target detection algorithm YOLOX-drone based on YOLOX-S to solve the problem of the UAV being deformed and partially occluded in complex scenes, which makes it difficult to identify. First, in this study, numerous occluded drone images are collected in complex scenes, and the drone pictures are downloaded online for occlusion processing. The drone images were labeled to establish a UAV image dataset. Second, the YOLOX-S target detection network was constructed. On this premise, the coordinate attention mechanism is introduced to improve the saliency of the target image when the drone is obscured by highlighting useful features and suppressing useless ones. Then, the bottom-up path enhancement structure in the feature fusion layer is removed to reduce the network complexity, and an adaptive feature fusion network structure is designed to improve the expression ability of useful features, suppress interference, and improve detection accuracy. First, experiments were conducted on the Dalian University of Technology Anti-UAV dataset, and the experimental results show that YOLOX-drone improved average accuracy (IOU = 0.5) by 3.2%, 4.7%, and 10.1% compared to YOLOX-S, YOLOv5-S, and YOLOX-tiny, respectively. Then, experiments were conducted on the self-built UAV image dataset, and YOLOX-drone improved the average accuracy (IOU = 0.5) by 2.4%, 2.1%, and 6.4% in the cases of no occlusion, general occlusion, and severe occlusion, respectively, when compared with the original YOLOX-S target detection model. This demonstrates that the improved algorithm has good anti-occlusion detection ability.

     

  • loading
  • [1]
    薛珊, 李廣青, 呂瓊瑩, 等. 基于卷積神經網絡的反無人機系統聲音識別方法. 工程科學學報, 2020, 42(11):1516

    Xue S, Li G Q, Lü Q Y, et al. Sound recognition method of an anti-UAV system based on a convolutional neural network. Chin J Eng, 2020, 42(11): 1516
    [2]
    陳青全, 豐志偉, 張國斌, 等. 反無人機繩網捕獲系統的動力學建模與仿真. 國防科技大學學報, 2022, 44(2):9 doi: 10.11887/j.cn.202202002

    Chen Q Q, Feng Z W, Zhang G B, et al. Dynamic modeling and simulation of anti-UAV tethered-net capture system. J Natl Univ Def Technol, 2022, 44(2): 9 doi: 10.11887/j.cn.202202002
    [3]
    薛珊, 衛立煒, 顧宸瑜, 等. 采用混合域注意力機制的無人機識別方法. 西安交通大學學報, http://kns.cnki.net/kcms/detail/61.1069.t.20220701.1417.004.html

    Xue S, Wei L W, Gu C Y, et al. A recognition method for drone based on mixed domain attention mechanism. J Xi'an Jiaotong Univ, http://kns.cnki.net/kcms/detail/61.1069.t.20220701.1417.004.html
    [4]
    羅俊海, 王芝燕. 無人機探測與對抗技術發展及應用綜述. 控制與決策, 2022, 37(3):530

    Luo J H, Wang Z Y. A review of development and application of UAV detection and counter technology. Control Decis, 2022, 37(3): 530
    [5]
    王曉. 視頻中無人機的實時檢測與跟蹤算法研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2019

    Wang X. Research on Real-time Detection and Tracking Algorithm of UAV in Video [Dissertation]. Harbin: Harbin Engineering University, 2019
    [6]
    邵盼愉. 基于視覺的無人機入侵檢測與跟蹤系統設計與實現[學位論文]. 杭州: 浙江大學, 2018

    Shao P Y. Design and Implementation of Vision Based Drone Intrusion and Tracking System [Dissertation]. Hangzhou: Zhejiang University, 2018
    [7]
    趙輝, 李志偉, 張天琪. 基于注意力機制的單發多框檢測器算法. 電子與信息學報, 2021, 43(7):2096 doi: 10.11999/JEIT200304

    Zhao H, Li Z W, Zhang T Q. Attention based single shot multibox detector. J Electron &Inf Technol, 2021, 43(7): 2096 doi: 10.11999/JEIT200304
    [8]
    陶磊, 洪韜, 鈔旭. 基于YOLOv3的無人機識別與定位追蹤. 工程科學學報, 2020, 42(4):463

    Tao L, Hong T, Chao X. Drone identification and location tracking based on YOLOv3. Chin J Eng, 2020, 42(4): 463
    [9]
    崔艷鵬, 王元皓, 胡建偉. 一種改進YOLOv3的動態小目標檢測方法. 西安電子科技大學學報, 2020, 47(3):1 doi: 10.19665/j.issn1001-2400.2020.03.001

    Cui Y P, Wang Y H, Hu J W. Detection method for a dynamic small target using the improved YOLOv3. J Xidian Univ, 2020, 47(3): 1 doi: 10.19665/j.issn1001-2400.2020.03.001
    [10]
    張瑞鑫, 黎寧, 張夏夏, 等. 基于優化CenterNet的低空無人機檢測方法. 北京航空航天大學學報, 2022, 48(11):2335

    Zhang R X, Li N, Zhang X X, et al. Low-altitude UAV detection method based on optimized CenterNet. J Beijing Univ Aeronaut Astronaut, 2022, 48(11): 2335
    [11]
    Ge Z, Liu S T, Wang F, et al. Yolox: Exceeding yolo series in 2021 [J/OL]. arXir preprint online (2021-8-6) [2022-10-21]. https://arxiv.org/abs/2107.08430
    [12]
    Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, 2021: 13708
    [13]
    Duan K W, Bai S, Xie L X, et al. Centernet: Keypoint triplets for object detection // Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, 2019: 6568
    [14]
    Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. arXir preprint online (2020-4-23) [2022-10-21]. https://arxiv.org/abs/2004.10934
    [15]
    Zhang H Y, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization [J/OL]. arXir preprint online (2018-4-27) [2022-10-21]. https://arxiv.org/abs/1710.09412
    [16]
    Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, 2020: 1571
    [17]
    He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904 doi: 10.1109/TPAMI.2015.2389824
    [18]
    Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 8759
    [19]
    Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 936
    [20]
    陳勇, 劉曦, 劉煥淋. 基于特征通道和空間聯合注意機制的遮擋行人檢測方法. 電子與信息學報, 2020, 42(6):1486 doi: 10.11999/JEIT190606

    Chen Y, Liu X, Liu H L. Occluded pedestrian detection based on joint attention mechanism of channel-wise and spatial information. J Electron &Inf Technol, 2020, 42(6): 1486 doi: 10.11999/JEIT190606
    [21]
    Liu S T, Huang D, Wang Y H. Learning spatial fusion for single-shot object detection [J/OL]. arXir preprint online (2019-11-25) [2022-10-21]. https://arxiv.org/abs/1911.09516
    [22]
    Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module // The 15th European Conference on Computer Vision. Munich, 2018: 3
    [23]
    Zhang S S, Chen D, Yang J, et al. Guided attention in CNNs for occluded pedestrian detection and re-identification. Int J Comput Vis, 2021, 129(6): 1875 doi: 10.1007/s11263-021-01461-z
    [24]
    Hu J, Shen L, Sun G. Squeeze-and-excitation networks // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132
    [25]
    Wang Q L, Wu B G, Zhu P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Seattle, 2020: 11531
    [26]
    Zhou B L, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 2921
    [27]
    Zhao J, Zhang J S, Li D D, et al. Vision-based anti-UAV detection and tracking. IEEE Trans Intell Transp Syst, 2022, 23(12): 25323 doi: 10.1109/TITS.2022.3177627
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(8)

    Article views (538) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164