[1] |
謝建新, 宿彥京, 薛德禎, 等機器學習在材料研發中的應用金屬學報 202157111343
Xie J X, Su Y J, Xue D Z, et alMachine learning for materials research and developmentActa Metall Sin 202157111343
|
[2] |
Agrawal A, Choudhary APerspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials scienceAPL Mater 201645053208
|
[3] |
Liu Y L, Niu C, Wang Z, et alMachine learning in materials genome initiative: A reviewJ Mater Sci Technol 202057113
|
[4] |
Hart G L W, Mueller T, Toher C, et alMachine learning for alloysNat Rev Mater 202168730
|
[5] |
Chen C, Zuo Y X, Ye W K, et alA critical review of machine learning of energy materialsAdv Energy Mater 20201081903242
|
[6] |
Raccuglia P, Elbert K C, Adler P D F, et alMachine-learning-assisted materials discovery using failed experimentsNature 2016533760173
|
[7] |
Janet J P, Chan L, Kulik H JAccelerating chemical discovery with machine learning: Simulated evolution of spin crossover complexes with an artificial neural networkJ Phys Chem Lett 2018951064
|
[8] |
Torkamannia A, Omidi Y, Ferdousi RA review of machine learning approaches for drug synergy prediction in cancerBrief Bioinform 2022233bbac075
|
[9] |
鄭偉達, 張惠然, 胡紅青, 等基于不同機器學習算法的鈣鈦礦材料性能預測中國有色金屬學報 2019294803
Zheng W D, Zhang H R, Hu H Q, et alPerformance prediction of perovskite materials based on different machine learning algorithmsChin J Nonferrous Met 2019294803
|
[10] |
Balachandran P V, Emery A A, Gubernatis J E, et alPredictions of new ABO 3 perovskite compounds by combining machine learning and density functional theoryPhys Rev Materials 201824043802
|
[11] |
She C L, Huang Q C, Chen C, et alMachine learning-guided search for high-efficiency perovskite solar cells with doped electron transport layersJ Mater Chem A 202194425168
|
[12] |
Sun Y T, Bai H Y, Li M Z, et alMachine learning approach for prediction and understanding of glass-forming abilityJ Phys Chem Lett 20178143434
|
[13] |
Xiong J E, Zhang T Y, Shi S QMachine learning prediction of elastic properties and glass-forming ability of bulk metallic glassesMRS Commun 201992576
|
[14] |
徐燕, 張玉鳳, 高湉, 等Al基非晶合金表征參數的支持向量回歸分析中國有色金屬學報 2016264836
Xu Y, Zhang Y F, Gao T, et alParameters analysis of Al-based amorphous alloys using support vector regressionChin J Nonferrous Met 2016264836
|
[15] |
王炯, 肖斌, 劉軼. 機器學習輔助的高通量實驗加速硬質高熵合金Co xCr yTi zMo uW v成分設計. 中國材料進展 2020394269
Wang J, Xiao B, Liu Y. Machine learning assisted high-throughput experiments accelerates the composition design of hard high-entropy alloy Co xCr yTi zMo uW vMater China 2020394269
|
[16] |
Rao Z Y, Tung P Y, Xie R W, et alMachine learning-enabled high-entropy alloy discoveryScience 2022378661578
|
[17] |
Klimenko D, Stepanov N, Li J A, et alMachine learning-based strength prediction for refractory high-entropy alloys of the Al–Cr–Nb–Ti–V–Zr systemMaterials 202114237213
|
[18] |
Wang C S, Fu H D, Jiang L, et alA property-oriented design strategy for high performance copper alloys via machine learningNPJ Comput Mater 2019587
|
[19] |
Zhang H T, Fu H D, He X Q, et alDramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screeningActa Mater 2020200803
|
[20] |
Wu S W, Zhou X G, Ren J K, et alOptimal design of hot rolling process for C–Mn steel by combining industrial data-driven model and multi-objective optimization algorithmJ Iron Steel Res Int 2018257700
|
[21] |
邱華東, 田建艷, 王書宇, 等模糊神經網絡融合建模方法及其在軋制力控制中的應用中國冶金 202131152
Qiu H D, Tian J Y, Wang S Y, et alModeling method of fuzzy neural network and its application in rolling force controlChina Metall 202131152
|
[22] |
Asif K, Zhang L, Derrible S, et alMachine learning model to predict welding quality using air-coupled acoustic emission and weld inputsJ Intell Manuf 2022333881
|
[23] |
Hart-Rawung T, Buhl J, Bambach MA fast approach for optimization of hot stamping based on machine learning of phase transformation kineticsProcedia Manuf 202047707
|
[24] |
宿彥京, 付華棟, 白洋, 等中國材料基因工程研究進展金屬學報 202056101313
Su Y J, Fu H D, Bai Y, et alProgress in materials genome engineering in ChinaActa Metall Sin 202056101313
|
[25] |
Raissi MDeep hidden physics models: Deep learning of nonlinear partial differential equationsJ Mach Learn Res 2018191
|
[26] |
Sun L N, Gao H, Pan S W, et alSurrogate modeling for fluid flows based on physics-constrained deep learning without simulation dataComput Methods Appl Mech Eng 2020361112732
|
[27] |
Sang L, Xu M, Qian S S, et alKnowledge graph enhanced neural collaborative filtering with residual recurrent networkNeurocomputing 2021454417
|
[28] |
Chai X QDiagnosis method of thyroid disease combining knowledge graph and deep learningIEEE Access 20208149787
|
[29] |
|