Citation: | WANG Wenlong, LI Su, SUN Jing, JIANG Zhenyu, JIA Pingshan. Research progress on resource regeneration of spent ternary cathode materials[J]. Chinese Journal of Engineering, 2023, 45(9): 1470-1481. doi: 10.13374/j.issn2095-9389.2022.09.15.002 |
[1] |
Xing L, Lin S, Yu J G. Novel recycling approach to regenerate a LiNi0.6Co0.2Mn0.2O2 cathode material from spent lithium-ion batteries. Ind Eng Chem Res, 2021, 60(28): 10303 doi: 10.1021/acs.iecr.1c01151
|
[2] |
Fan E S, Li L, Wang Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev, 2020, 120(14): 7020 doi: 10.1021/acs.chemrev.9b00535
|
[3] |
Xiao J F, Li J, Xu Z M. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives. Environ Sci Technol, 2020, 54(1): 9 doi: 10.1021/acs.est.9b03725
|
[4] |
Zou H Y, Gratz E, Apelian D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem, 2013, 15(5): 1183 doi: 10.1039/c3gc40182k
|
[5] |
張蘇江, 張彥文, 張立偉, 等. 中國鋰礦資源現狀及其可持續發展策略. 無機鹽工業, 2020, 52(7):1 doi: 10.11962/1006-4990.2020-0028
Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China’s lithium resources. Inorg Chem Ind, 2020, 52(7): 1 doi: 10.11962/1006-4990.2020-0028
|
[6] |
盧宜冠, 郝波, 孫凱, 等. 鈷金屬資源概況與資源利用情況分析. 地質調查與研究, 2020, 43(1):72 doi: 10.3969/j.issn.1672-4135.2020.01.008
Lu Y G, Hao B, Sun K, et al. General situation of cobalt resource and its utilization analysis. Geol Surv Res, 2020, 43(1): 72 doi: 10.3969/j.issn.1672-4135.2020.01.008
|
[7] |
魏國. 我國鎳產業發展現狀及市場分析. 中國有色金屬, 2020(14):44 doi: 10.3969/j.issn.1673-3894.2020.14.011
Wei G. Development status and market analysis of nickel industry in China. China Nonferrous Met, 2020(14): 44 doi: 10.3969/j.issn.1673-3894.2020.14.011
|
[8] |
Liang R, Wu Z Y, Yang W M, et al. A simple one-step molten salt method for synthesis of micron-sized single primary particle LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Ionics, 2020, 26(4): 1635 doi: 10.1007/s11581-020-03500-0
|
[9] |
王晶, 梁精龍, 李慧, 等. 廢舊鋰電池中有價金屬的處理方法現狀及展望. 熱加工工藝, 2018, 47(22):12 doi: 10.14158/j.cnki.1001-3814.2018.22.003
Wang J, Liang J, Li H, et al. Status and prospects of treatment methods for valuable metals in spent lithium-ion battery. Hot Work Technol, 2018, 47(22): 12 doi: 10.14158/j.cnki.1001-3814.2018.22.003
|
[10] |
Fey G T K, Chang C S, Kumar T P. Synthesis and surface treatment of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Solid State Electrochem, 2010, 14(1): 17 doi: 10.1007/s10008-008-0772-3
|
[11] |
Yoshio M, Noguchi H, Itoh J I, et al. Preparation and properties of LiCoyMnxNi1?x?yO2 as a cathode for lithium ion batteries. J Power Sources, 2000, 90(2): 176 doi: 10.1016/S0378-7753(00)00407-9
|
[12] |
Noh H J, Youn S, Yoon C S, et al. Comparison of the structural and electrochemical properties of layered LiNixCoyMnzO2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources, 2013, 233: 121
|
[13] |
Li W D, Liu X M, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: A comprehensive evaluation on long-term cyclability. Adv Energy Mater, 2018, 8(15): 1703154 doi: 10.1002/aenm.201703154
|
[14] |
Ryu H H, Park K J, Yoon C S, et al. Capacity fading of Ni-rich Li [NixCoyMn1–x–y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem Mater, 2018, 30(3): 1155
|
[15] |
Mu L Q, Yuan Q X, Tian C X, et al. Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials. Nat Commun, 2018, 9(1): 2810 doi: 10.1038/s41467-018-05172-x
|
[16] |
Sayilgan E, Kukrer T, Civelekoglu G, et al. A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy, 2009, 97(3-4): 158 doi: 10.1016/j.hydromet.2009.02.008
|
[17] |
Pindar S, Dhawan N. Comparison of microwave and conventional indigenous carbothermal reduction for recycling of discarded lithium-ion batteries. Trans Indian Inst Met, 2020, 73(8): 2041 doi: 10.1007/s12666-020-01956-2
|
[18] |
Zhao Y Z, Liu B G, Zhang L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. J Hazard Mater, 2020, 384: 121487 doi: 10.1016/j.jhazmat.2019.121487
|
[19] |
高桂蘭, 賀欣, 李亞光, 等. 廢舊車用動力鋰離子電池的回收利用現狀. 環境工程, 2017, 35(10):135 doi: 10.13205/j.hjgc.201710028
Gao G L, He X, Li Y G, et al. Current status of recycling technology of spent automotive lithium-ion batteries. Environ Eng, 2017, 35(10): 135 doi: 10.13205/j.hjgc.201710028
|
[20] |
Zhang Y C, Wang W Q, Fang Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching. Waste Manag, 2020, 102: 847 doi: 10.1016/j.wasman.2019.11.045
|
[21] |
Zhang J L, Hu J T, Zhang W J, et al. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. J Clean Prod, 2018, 204: 437 doi: 10.1016/j.jclepro.2018.09.033
|
[22] |
Liu P C, Xiao L, Tang Y W, et al. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials. J Therm Anal Calorim, 2019, 136(3): 1323 doi: 10.1007/s10973-018-7732-7
|
[23] |
Hu J T, Zhang J L, Li H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources, 2017, 351: 192 doi: 10.1016/j.jpowsour.2017.03.093
|
[24] |
Fu Y P, He Y Q, Li J L, et al. Improved hydrometallurgical extraction of valuable metals from spent lithium-ion batteries via a closed-loop process. J Alloys Compd, 2020, 847: 156489 doi: 10.1016/j.jallcom.2020.156489
|
[25] |
Zhao Y Z, Liu B G, Zhang L B, et al. Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries. J Hazard Mater, 2020, 396: 122740 doi: 10.1016/j.jhazmat.2020.122740
|
[26] |
Peng C, Liu F P, Wang Z L, et al. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. J Power Sources, 2019, 415: 179 doi: 10.1016/j.jpowsour.2019.01.072
|
[27] |
Fan E S, Li L, Lin J, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries. ACS Sustainable Chem Eng, 2019, 7(19): 16144 doi: 10.1021/acssuschemeng.9b03054
|
[28] |
工業和信息化部. 新能源汽車廢舊動力蓄電池綜合利用行業規范條件(2019年本). 再生資源與循環經濟, 2020, 13(01):1 doi: 10.3969/j.issn.1674-0912.2020.01.001
Ministry of Industry and Information Technology. Industry specifications for comprehensive utilization of waste power batteries for new energy vehicles (2019 Version). Recycl Resour Circ Econ, 2020, 13(01): 1 doi: 10.3969/j.issn.1674-0912.2020.01.001
|
[29] |
Tao R, Xing P, Li H Q, et al. Full-component pyrolysis coupled with reduction of cathode material for recovery of spent LiNixCoyMnzO2 lithium-ion batteries. ACS Sustainable Chem Eng, 2021, 9(18): 6318 doi: 10.1021/acssuschemeng.1c00210
|
[30] |
Cheng X Y, Guo G H, Cheng Y K, et al. Effect of hydrogen peroxide on the recovery of valuable metals from spent LiNi0.6Co0.2Mn0.2O2 batteries. Energy Tech, 2022, 10(4): 2200039 doi: 10.1002/ente.202200039
|
[31] |
Higuchi A, Ankei N, Nishihama S, et al. Selective recovery of lithium from cathode materials of spent lithium ion battery. JOM, 2016, 68(10): 2624 doi: 10.1007/s11837-016-2027-6
|
[32] |
Fu Y P, He Y Q, Yang Y, et al. Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries. J Alloys Compd, 2020, 832: 154920 doi: 10.1016/j.jallcom.2020.154920
|
[33] |
Or T, Gourley S W D, Kaliyappan K, et al. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2020, 2(1): 6 doi: 10.1002/cey2.29
|
[34] |
Zhang X X, Li L, Fan E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem Soc Rev, 2018, 47(19): 7239 doi: 10.1039/C8CS00297E
|
[35] |
Refly S, Floweri O, Mayangsari T R, et al. Green recycle processing of cathode active material from LiNi1/3Co1/3Mn1/3O2 (NCM111) battery waste through citric acid leaching and oxalate co-precipitation process. Mater Today Proc, 2021, 44: 3378 doi: 10.1016/j.matpr.2020.11.664
|
[36] |
沈棒, 顧衛星, 袁海平, 等. 廢舊三元鋰離子電池浸出及純化技術研究進展. 環境科學與技術, 2018, 41(2):114 doi: 10.19672/j.cnki.1003-6504.2018.02.017
Shen B, Gu W X, Yuan H P, et al. A review on leaching and purification technologies of spent ternary Li-ion batteries. Environ Sci Technol, 2018, 41(2): 114 doi: 10.19672/j.cnki.1003-6504.2018.02.017
|
[37] |
Moazzam P, Boroumand Y, Rabiei P, et al. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Chemosphere, 2021, 277: 130196 doi: 10.1016/j.chemosphere.2021.130196
|
[38] |
鄒超, 潘君麗, 劉維橋, 等. 濕法回收鋰離子電池三元正極材料的進展. 電池, 2018, 48(2):130 doi: 10.19535/j.1001-1579.2018.02.016
Zou C, Pan J L, Liu W Q, et al. Progress in hydrometallurgical process for recycling ternary cathode material of Li-ion battery. Battery Bimon, 2018, 48(2): 130 doi: 10.19535/j.1001-1579.2018.02.016
|
[39] |
Refly S, Floweri O, Mayangsari T R, et al. Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid coprecipitation processes. ACS Sustainable Chem Eng, 2020, 8(43): 16104 doi: 10.1021/acssuschemeng.0c01006
|
[40] |
Zhang X H, Cao H B, Xie Y B, et al. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis. Sep Purif Technol, 2015, 150: 186 doi: 10.1016/j.seppur.2015.07.003
|
[41] |
Chen X P, Fan B L, Xu L P, et al. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. J Clean Prod, 2016, 112: 3562 doi: 10.1016/j.jclepro.2015.10.132
|
[42] |
高桂蘭, 范丹丹, 賀欣, 等. 采用響應面優化酸浸法回收報廢三元電池中有價金屬的研究. 安全與環境學報. 2020, 20(1): 290
Gao G, Fan D, He X, et al. Acid leaching optimization by response surface to recover valuable metals from spent ternary battery. J Saf Environ, 2020, 20(1): 290
|
[43] |
Zheng Y, Wang S Q, Gao Y L, et al. Lithium nickel cobalt manganese oxide recovery via spray pyrolysis directly from the leachate of spent cathode scraps. ACS Appl Energy Mater, 2019, 2(9): 6952 doi: 10.1021/acsaem.9b01647
|
[44] |
Song D M, Wang T Y, Liu Z A, et al. Characteristic comparison of leaching valuable metals from spent power Li-ion batteries for vehicles using the inorganic and organic acid system. J Environ Chem Eng, 2022, 10(1): 107102 doi: 10.1016/j.jece.2021.107102
|
[45] |
Ku H, Jung Y, Jo M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater, 2016, 313: 138 doi: 10.1016/j.jhazmat.2016.03.062
|
[46] |
Wang C, Wang S B, Yan F, et al. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manag, 2020, 114: 253 doi: 10.1016/j.wasman.2020.07.008
|
[47] |
Wang S B, Wang C, Lai F J, et al. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Manag, 2020, 102: 122 doi: 10.1016/j.wasman.2019.10.017
|
[48] |
Boxall N J, Cheng K Y, Bruckard W, et al. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. J Hazard Mater, 2018, 360: 504 doi: 10.1016/j.jhazmat.2018.08.024
|
[49] |
Bahaloo-Horeh N, Mousavi S M, Baniasadi M. Use of adapted metal tolerant aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J Clean Prod, 2018, 197: 1546 doi: 10.1016/j.jclepro.2018.06.299
|
[50] |
Roy J J, Srinivasan M, Cao B. Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density. ACS Sustainable Chem Eng, 2021, 9(8): 3060 doi: 10.1021/acssuschemeng.0c06573
|
[51] |
應皆榮, 高劍, 姜長印, 等. 控制結晶法制備球形鋰離子電池正極材料的研究進展. 無機材料學報, 2006, 21(2):291 doi: 10.3321/j.issn:1000-324X.2006.02.005
Ying J R, Gao J, Jiang C Y, et al. Research and development of preparing spherical cathode materials for lithium ion batteries by controlled crystallization method. J Inor Mater, 2006, 21(2): 291 doi: 10.3321/j.issn:1000-324X.2006.02.005
|
[52] |
Yang Y, Song S L, Jiang F, et al. Short process for regenerating Mn-rich cathode material with high voltage from mixed-type spent cathode materials via a facile approach. J Clean Prod, 2018, 186: 123 doi: 10.1016/j.jclepro.2018.03.147
|
[53] |
Yang X, Dong P, Hao T, et al. A combined method of leaching and co-precipitation for recycling spent LiNi0.6Co0.2Mn0.2O2 cathode materials:Process optimization and performance aspects. JOM, 2020, 72(11): 3843 doi: 10.1007/s11837-020-04263-9
|
[54] |
Gao R C, Sun C H, Xu L J, et al. Recycling LiNi0.5Co0.2Mn0.3O2 material from spent lithium-ion batteries by oxalate co-precipitation. Vacuum, 2020, 173: 109181 doi: 10.1016/j.vacuum.2020.109181
|
[55] |
Wu J X, Tan X H, Zhang J T, et al. Improvement of electrochemical performance of nickel rich LiNi0.8Co0.1Mn0.1O2 cathode by lithium aluminatessurface modifications. Energy Technol, 2019, 7(2): 209 doi: 10.1002/ente.201800506
|
[56] |
Li L, Bian Y F, Zhang X X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Manag, 2018, 71: 362 doi: 10.1016/j.wasman.2017.10.028
|
[57] |
Lu H Q, Zhou H T, Svensson A M, et al. High capacity LiNi0.8Co0.1Mn0.1O2 synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries. Solid State Ion, 2013, 249-250: 105 doi: 10.1016/j.ssi.2013.07.023
|
[58] |
Chen X P, Kang D Z, Cao L, et al. Separation and recovery of valuable metals from spent lithium ion batteries: simultaneous recovery of Li and Co in a single step. Sep Purif Technol, 2019, 210: 690 doi: 10.1016/j.seppur.2018.08.072
|
[59] |
Chi Z X, Li J, Wang L H, et al. Direct regeneration method of spent LiNi1/3Co1/3Mn1/3O2 cathode materials via surface lithium residues. Green Chem, 2021, 23(22): 9099 doi: 10.1039/D1GC03526F
|
[60] |
Zhou H M, Zhao X X, Yin C J, et al. Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. Electrochimica Acta, 2018, 291: 142 doi: 10.1016/j.electacta.2018.08.134
|
[61] |
Shi Y, Chen G, Liu F, et al. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett, 2018, 3(7): 1683 doi: 10.1021/acsenergylett.8b00833
|
[62] |
Wang T, Luo H M, Bai Y C, et al. Direct recycling of spent NCM cathodes through ionothermal lithiation. Adv Energy Mater, 2020, 10(30): 2001204 doi: 10.1002/aenm.202001204
|
[63] |
Shi Y, Zhang M H, Meng Y S, et al. Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv Energy Mater, 2019, 9(20): 1900454 doi: 10.1002/aenm.201900454
|
[64] |
Jiang G H, Zhang Y N, Meng Q, et al. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method. ACS Sustainable Chem Eng, 2020, 8(49): 18138 doi: 10.1021/acssuschemeng.0c06514
|
[65] |
Georgi M T, Friedrich B, Weyhe R, et al. Development of a recycling process for Li-ion batteries. J Power Sources, 2012, 207: 173 doi: 10.1016/j.jpowsour.2012.01.152
|
[66] |
Lv W G, Wang Z H, Cao H B, et al. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chem Eng, 2018, 6(2): 1504 doi: 10.1021/acssuschemeng.7b03811
|
[67] |
Yu X L, Yu S C, Yang Z Z, et al. Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes. Energy Storage Mater, 2022, 51: 54 doi: 10.1016/j.ensm.2022.06.017
|
[68] |
Zhang C F, Wan J J, Li Y X, et al. Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping. J Mater Chem A, 2020, 8(14): 6893 doi: 10.1039/D0TA00260G
|
[69] |
Lv Y T, Cheng X, Qiang W J, et al. Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping. J Power Sources, 2020, 450: 227718 doi: 10.1016/j.jpowsour.2020.227718
|
[70] |
Zhang Z H, Qiu J H, Yu M, et al. Performance of Al-doped LiNi1/3Co1/3Mn1/3O2 synthesized from spent lithium ion batteries by sol-gel method. Vacuum, 2020, 172: 109105 doi: 10.1016/j.vacuum.2019.109105
|
[71] |
Fan X P, Tan C L, Li Y, et al. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. J Hazard Mater, 2021, 410: 124610 doi: 10.1016/j.jhazmat.2020.124610
|
[72] |
Abdel-Ghany A, El-Tawil R S, Hashem A M, et al. Improved electrochemical performance of LiNi0.5Mn0.5O2 by Li-enrichment and AlF3 coating. Materialia, 2019, 5: 100207 doi: 10.1016/j.mtla.2019.100207
|
[73] |
Zhang Y J, Hao T, Huang X S, et al. Synthesis of high performance nano-over-lithiated oxide coated LiNi0.6Co0.2Mn0.2O2 from spent lithium ion batteries. Mater Res Express, 2019, 6(8): 085521 doi: 10.1088/2053-1591/ab209f
|
[74] |
Jin S, Xu Y X, Liang J Q, et al. A novel coating method for MoO3 to improve the electrochemical performance of regenerated Li(Ni0.8Co0.1Mn0.1)O2 cathode material from spent Li‐ion batteries. ChemistrySelect, 2022, 7(18): e20220812
|
[75] |
Meng X Q, Cao H B, Hao J, et al. Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag. ACS Sustainable Chem Eng, 2018, 6(5): 5797 doi: 10.1021/acssuschemeng.7b03880
|