<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
CHENG Zhaoyang, ZHONG Bolin, NI Zhengxuan, JING Wenqiang, ZHANG Shiqi, LIU Jing. Research progress on simultaneous control of mechanical and magnetic properties of high-strength non-oriented silicon steel for new energy vehicle driving motors[J]. Chinese Journal of Engineering, 2023, 45(9): 1482-1492. doi: 10.13374/j.issn2095-9389.2022.09.06.004
Citation: CHENG Zhaoyang, ZHONG Bolin, NI Zhengxuan, JING Wenqiang, ZHANG Shiqi, LIU Jing. Research progress on simultaneous control of mechanical and magnetic properties of high-strength non-oriented silicon steel for new energy vehicle driving motors[J]. Chinese Journal of Engineering, 2023, 45(9): 1482-1492. doi: 10.13374/j.issn2095-9389.2022.09.06.004

Research progress on simultaneous control of mechanical and magnetic properties of high-strength non-oriented silicon steel for new energy vehicle driving motors

doi: 10.13374/j.issn2095-9389.2022.09.06.004
More Information
  • Corresponding author: E-mail: liujing@wust.edu.cn
  • Received Date: 2022-09-06
    Available Online: 2022-10-12
  • Publish Date: 2023-09-25
  • New energy vehicles can effectively alleviate the severe dependence of the conventional automobile industry on fossil fuels and the environmental problems worldwide. They are an inevitable requirement in the future development of vehicles. As the power core of new energy vehicles, the driving motors should demonstrate excellent magnetic properties to improve energy conversion efficiency and high strength to resist centrifugal forces during high-speed operation. However, the mechanical and magnetic properties of non-oriented silicon steels remain challenging to balance. Therefore, their coordinated control is a key scientific issue in developing driving motors used in new energy vehicles. This study reviews the regulation of the mechanical and magnetic properties of high-strength non-oriented silicon steels. Additionally, the influence of various strengthening methods on the magnetic properties of non-oriented silicon steels is analyzed. Furthermore, this review highlights the future development of coordinated control of the mechanical and magnetic properties of high-strength non-oriented silicon steels. In non-oriented silicon steels, the dislocation density is relatively low, and the grain size is rather large. Thus, the contribution of dislocation and fine-grain strengthening to the yield strength is minimal. Therefore, by combining fine-grain, dislocation, and solid solution strengthening, the best match in the mechanical and magnetic properties of high-strength nonoriented silicon steels can be obtained. Although the precipitation strengthening effect of alloying elements, such as Nb, Ti, V, and Zr, in nonoriented silicon steels is evident, the carbonitrides formed are coarse-sized and irregularly shaped, which considerably deteriorates the magnetic properties of nonoriented silicon steels. During the early stage of aging treatment, the dispersed Cu precipitates with a BCC structure and fairly small grain size, exhibiting a good strengthening effect. Moreover, these Cu precipitates are coherent with the matrix and exhibit little hindering force on the movement of magnetic domains such that they do not deteriorate the magnetic properties of nonoriented silicon steels. Therefore, employing various strengthening methods or finely dispersed nano-coherent precipitates, nonoriented silicon steels with high strength and excellent magnetic properties can be developed for application in driving motors of new energy vehicles, which is an essential requirement for the high-quality development of the new energy vehicle industry.

     

  • loading
  • [1]
    邢奕, 崔永康, 田京雷, 等. 鋼鐵行業低碳技術應用現狀與展望. 工程科學學報, 2022, 44(4):801 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204030

    Xing Y, Cui Y K, Tian J L, et al. Application status and prospect of low carbon technology in iron and steel industry. Chin J Eng, 2022, 44(4): 801 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204030
    [2]
    陳卓. “雙碳”大背景下的中國電工鋼走勢. 電工鋼, 2022, 4(1):1

    Chen Z. Trend of China’s electrical steel under the background of carbon peak and carbon neutralization. Electr Steel, 2022, 4(1): 1
    [3]
    唐葆君, 王翔宇, 王彬, 等. 中國新能源汽車行業發展水平分析及展望. 北京理工大學學報(社會科學版), 2019, 21(2):6 doi: 10.15918/j.jbitss1009-3370.2019.7261

    Tang B J, Wang X Y, Wang B, et al. Analysis and prospect of China’s new energy vehicles industry development level. J Beijing Inst Technol (Soc Sci Ed), 2019, 21(2): 6 doi: 10.15918/j.jbitss1009-3370.2019.7261
    [4]
    戴睿, 張鳳閣, 王惠軍. 高速電機的特點與關鍵技術問題. 風機技術, 2019, 61(4):59 doi: 10.16492/j.fjjs.2019.04.0010

    Dai R, Zhang F G, Wang H J. Characteristics and key technical issues of high speed motors. Chin J Turbomach, 2019, 61(4): 59 doi: 10.16492/j.fjjs.2019.04.0010
    [5]
    龔堅, 羅海文. 新能源汽車驅動電機用高強度無取向硅鋼片的研究與進展. 材料工程, 2015, 43(6):102 doi: 10.11868/j.issn.1001-4381.2015.06.016

    Gong J, Luo H W. Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles. J Mater Eng, 2015, 43(6): 102 doi: 10.11868/j.issn.1001-4381.2015.06.016
    [6]
    馬德稷, 李建偉, 張航, 等. 新能源車驅動電機用電工鋼用量解析計算及預測方法. 電工鋼, 2022, 4(2):18

    Ma D J, Li J W, Zhang H, et al. Analytical calculation and prediction method of electrical steel consumption for traction motor of new energy vehicle. Electr Steel, 2022, 4(2): 18
    [7]
    樊立峰, 秦美美, 岳爾斌, 等. 新能源汽車對無取向硅鋼的技術挑戰. 材料導報, 2021, 35(15):15183 doi: 10.11896/cldb.20050259

    Fan L F, Qin M M, Yue E B, et al. Technological challenges of new energy vehicle to non-oriented silicon steel. Mater Rep, 2021, 35(15): 15183 doi: 10.11896/cldb.20050259
    [8]
    朱誠意, 鮑遠凱, 汪勇, 等. 新能源汽車驅動電機用無取向硅鋼應用現狀和性能調控研究進展. 材料導報, 2021, 35(23):23089 doi: 10.11896/cldb.20070220

    Zhu C Y, Bao Y K, Wang Y, et al. Research progress on application status and property control of non-oriented silicon steel for traction motor of new energy vehicles. Mater Rep, 2021, 35(23): 23089 doi: 10.11896/cldb.20070220
    [9]
    Oda Y, T Hiratani, S Kasai, et al. Recent developments of non-oriented electrical steel sheet for automobile electrical devices. J Magnetic Soc Japan, 2014(TN.38): 239
    [10]
    Oda Y, Okubo T, Takata M. Recent development of non-oriented electrical steel in JFE steel. JFE Tech Rep, 2016(21): 7
    [11]
    Takeaki W, Arai S, Kurosaki Y. Electrical steel sheet for traction motor of hybrid/electrical vehicles. Nippon Steel Technical Report, 2013, 103: 116
    [12]
    陳曉, 謝世殊, 王波. 電動汽車驅動電機用無取向硅鋼產品的開發 // 第十屆中國鋼鐵年會暨第六屆寶鋼學術年會論文集III. 上海, 2015: 1635

    Chen X, Xie S S, Wang B. Development of non-oriented silicon steels for traction motor use in electric vehicles // Proceedings III of 10th China Iron & Steel Annual Meeting and 6th Bao Steel Academic Annual Meeting. Shanghai, 2015: 1635
    [13]
    何志堅, 裴英豪, 施立發. 一種電動汽車驅動電機用高強度冷軋無取向電工鋼及其生產方法; 中國專利, CN202010143584.3. 2020-6-23

    He Z J, Pei Y H, Shi L F, et al. High-Strength Cold-Rolled Non-Oriented Electrical Steel for Electrical Vehicle Driving Motor and Production Method: China Patent, CN202010143584.3. 2020-6-23
    [14]
    陸天林, 裴英豪, 施立發. 一種稀土處理的高強度無取向電工鋼制備方法; 中國專利, CN201910811202.7. 2019-10-25

    Lu T L, Pei Y H, Shi L F. Preparation Method of Rare Earth Treated High-Strength Non-Oriented Electrical Steel: China Patent, CN201910811202.7. 2019-10-25
    [15]
    石文敏, 馮大軍, 祝曉波, 等. Rm≥600 MPa的優良磁性能無取向電工鋼及其生產方法; 中國專利, CN201310420802.3. 2014-01-08

    Shi W M, Feng D J, Zhu X B, et al. Excellent Magnetic Non-Oriented Electrical Steel with Rm600 MPa and Its Production Method: China Patent, CN201310420802.3. 2014-01-08
    [16]
    楊光, 石文敏, 馮大軍, 等. 一種屈服強度≥600 MPa高速電機轉子用無取向硅鋼及生產方法; 中國專利, CN201711245381. X. 2018-5-1

    Yang G, Shi W M, Feng D J, et al. Non-Oriented Silicon Steel for High-Speed Motor Rotor with Yield Strength ≥600 MPa and Production Method; China Patent, CN201711245381. X. 2018-5-1
    [17]
    石文敏, 楊光, 李準, 等. 改善含Cu高強度無取向硅鋼冷軋質量的方法; 中國專利, CN202110347327.6. 2021-7-6

    Shi W M, Yang G, Li Z, et al. Method of Improving Cold Rolling Quality of High-Strength Non-Oriented Silicon Steel Containing Cu; China Patent, CN202110347327.6. 2021-7-6
    [18]
    沈侃毅, 張峰, 李國保, 等. 一種定子, 轉子鐵芯同時套裁用無取向電工鋼板及其制造方法, 中國專利, CN202010725450.2. 2022-1-25

    Shen K Y, Zhang F, Li G B, et al. Non-Oriented Electrical Steel Plate for Simultaneous Sleeve Cutting of Stator and Rotor Cores and Manufacturing Method; China Patent, CN202010725450.2. 2022-1-25
    [19]
    雍歧龍. 鋼鐵材料中的第二相. 北京: 冶金工業出版社, 2006

    Yong Q L. The Second Phase in Steel Materials. Beijing: Metallurgical Industry Press, 2006
    [20]
    Wang Y Q, Zhang X M, He Z, et al. Effect of copper precipitates on mechanical and magnetic properties of Cu-bearing non-oriented electrical steel processed by twin-roll strip casting. Mater Sci Eng A, 2017, 703: 340 doi: 10.1016/j.msea.2017.07.075
    [21]
    毛衛民, 楊平. 電工鋼的材料學原理. 北京: 高等教育出版社, 2013

    Mao W M, Yang P. Material Science Principles on Electrical Steels. Beijing: Higher Education Press, 2013
    [22]
    何忠治, 趙宇, 羅海文. 電工鋼. 北京: 冶金工業出版社, 2012

    He Z Z, Zhao Y, Luo H W. Electrical Steel. Beijing: Metallurgical Industry Press, 2012
    [23]
    Li Z H, Xie S K, Wang G D, et al. Ultrathin-gauge high silicon non-oriented electrical steel with high permeability and low core loss fabricated by optimized two-stage cold rolling method. Mater Charact, 2022, 183: 111593 doi: 10.1016/j.matchar.2021.111593
    [24]
    Jiao H T, Xu Y B, Zhao L Z, et al. Microstructural evolution and magnetic properties in strip cast non-oriented silicon steel produced by warm rolling. Mater Charact, 2019, 156: 109876 doi: 10.1016/j.matchar.2019.109876
    [25]
    Jiao H T, Xu Y B, Qiu W Z, et al. Significant effect of as-cast microstructure on texture evolution and magnetic properties of strip cast non-oriented silicon steel. J Mater Sci Technol, 2018, 34(12): 2472 doi: 10.1016/j.jmst.2018.05.007
    [26]
    林媛, 苗曉, 張文康. 常化和退火工藝對冷軋無取向電工鋼高頻磁性能和強度的影響 // 2015第十三屆中國電工鋼學術年會論文集. 濟南, 2015: 120

    Lin Y, Miao X, Zhang W K. Effect of heat treatment process on high frequency magnetic properties and strength of cold rolled non-oriented electrical steel // Proceedings of the 13th China Electrical Steel Academic Conference. Jinan, 2015: 120
    [27]
    于雷, 羅海文. 部分再結晶退火對無取向硅鋼的磁性能與力學性能的影響. 金屬學報, 2020, 56(3):291 doi: 10.11900/0412.1961.2019.00314

    Yu L, Luo H W. Effect of partial recrystallization annealing on magnetic properties and mechanical properties of non-oriented silicon steel. Acta Metall Sin, 2020, 56(3): 291 doi: 10.11900/0412.1961.2019.00314
    [28]
    Tanaka I, Yashiki H. Magnetic and mechanical properties of newly developed high-strength nonoriented electrical steel. IEEE Trans Magn, 2010, 46(2): 290 doi: 10.1109/TMAG.2009.2033457
    [29]
    潘振東, 項利, 張晨, 等. 高強度無取向電工鋼的研究進展. 機械工程材料, 2014, 38(4):7

    Pan Z D, Xiang L, Zhang C, et al. Research progress of high strength non-oriented electrical steels. Mater Mech Eng, 2014, 38(4): 7
    [30]
    程朝陽, 鐘柏林, 景文強, 等. Cr對含Nb高強無取向硅鋼組織、織構及性能的影響. 鋼鐵, 2022, 57(5):90

    Cheng Z Y, Zhong B L, Jing W Q, et al. Effect of Cr on microstructure, texture and properties of Nb-containing high strength non-oriented silicon steel. Iron Steel, 2022, 57(5): 90
    [31]
    Wan Y, Chen W Q. Effect of boron content on the microstructure and magnetic properties of non-oriented electrical steels. J Wuhan Univ Technol -Mat Sci Edit, 2015, 30(3): 574 doi: 10.1007/s11595-015-1191-9
    [32]
    Lee S I, De Cooman B C. Influence of phosphorous and boron on the recrystallization, grain growth and mechanical properties of 3% Si steel. Mater Sci Forum, 2010, 654-656: 302 doi: 10.4028/www.scientific.net/MSF.654-656.302
    [33]
    Xiong Z P, Timokhina I, Pereloma E. Clustering, nano-scale precipitation and strengthening of steels. Prog Mater Sci, 2021, 118: 100764 doi: 10.1016/j.pmatsci.2020.100764
    [34]
    Hawezy D. The influence of silicon content on physical properties of non-oriented silicon steel. Mater Sci Technol, 2017, 33(14): 1560 doi: 10.1080/02670836.2017.1295519
    [35]
    Barros J, Ros-Ya?ez T, Vandenbossche L, et al. The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel. J Magn Magn Mater, 2005, 290-291: 1457 doi: 10.1016/j.jmmm.2004.11.547
    [36]
    Moseley D, Hu Y, Randle V, et al. Role of silicon content and final annealing temperature on microtexture and microstructure development in non-oriented silicon steel. Mater Sci Eng A, 2005, 392(1-2): 282 doi: 10.1016/j.msea.2004.10.027
    [37]
    Lan M F, Zhang Y X, Fang F, et al. Effect of annealing after strip casting on microstructure, precipitates and texture in non-oriented silicon steel produced by twin-roll strip casting. Mater Charact, 2018, 142: 531 doi: 10.1016/j.matchar.2018.06.016
    [38]
    Xu Y B, Jiao H T, Zhang Y X, et al. Effect of pre-annealing prior to cold rolling on the precipitation, microstructure and magnetic properties of strip-cast non-oriented electrical steels. J Mater Sci Technol, 2017, 33(12): 1465 doi: 10.1016/j.jmst.2017.08.002
    [39]
    Jiao H T, Qiu W Z, Xiong W, et al. Effect of recrystallization annealing temperature on microstructure, texture and magnetic properties of non-oriented silicon steel produced by strip casting. Procedia Eng, 2017, 207: 2078 doi: 10.1016/j.proeng.2017.10.1116
    [40]
    Liu H T, Li H L, Wang H, et al. Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel. J Magn Magn Mater, 2016, 406: 149 doi: 10.1016/j.jmmm.2016.01.018
    [41]
    Fang F, Xu Y B, Zhang Y X, et al. Evolution of recrystallization microstructure and texture during rapid annealing in strip-cast non-oriented electrical steels. J Magn Magn Mater, 2015, 381: 433 doi: 10.1016/j.jmmm.2015.01.026
    [42]
    張鳳泉, 劉振宇, 駱忠漢, 等. 雙輥連鑄制備6.5%Si硅鋼薄帶的組織與性能. 武鋼技術, 2015, 53(3):20

    Zhang F Q, Liu Z Y, Luo Z H, et al. Microstructure and properties of 6.5% Si Steel thin strip produced through twin-roll continuous casting process. Wuhan Iron Steel Corp Technol, 2015, 53(3): 20
    [43]
    Liu H T, Li H Z, Li H L, et al. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5wt% Si non-oriented electrical steel. J Magn Magn Mater, 2015, 391: 65
    [44]
    Saxena A, Chaudhuri S K. Correlating the aluminum content with ferrite grain size and core loss in non-oriented electrical steel. ISIJ Int, 2004, 44(7): 1273 doi: 10.2355/isijinternational.44.1273
    [45]
    苗曉, 張文康, 王一德. Al含量對2.2%Si無取向硅鋼組織、織構和磁性能的影響. 特殊鋼, 2011, 32(6):56

    Miao X, Zhang W K, Wang Y D. Effect of Al content on structure, texture and magnetic performance of 2.2%Si non-oriented silicon steel. Special Steel, 2011, 32(6): 56
    [46]
    Nakayama T, Honjou N. Effect of aluminum and nitrogen on the magnetic properties of non-oriented semi-processed electrical steel sheet. J Magn Magn Mater, 2000, 213(1-2): 87 doi: 10.1016/S0304-8853(00)00005-6
    [47]
    張新仁, 謝曉心. 合金元素及工藝對高牌號無取向硅鋼磁性的影響. 鋼鐵研究, 1988, 16(4):10

    Zhang X R, Xie X X. Effect of alloying elements and process on magnetic properties of high-grade non-oriented silicon steel. Res Irona Nd Steel, 1988, 16(4): 10
    [48]
    Schulte M, Steentjes S, Leuning N, et al. Effect of Manganese in high silicon alloyed non-oriented electrical steel sheets. J Magn Magn Mater, 2019, 477: 372 doi: 10.1016/j.jmmm.2018.07.025
    [49]
    余春雷, 劉靜, 付兵, 等. Mn對高牌號無取向硅鋼組織、織構及磁性能的影響. 功能材料, 2021, 52(7):7072 doi: 10.3969/j.issn.1001-9731.2021.07.012

    Yu C L, Liu J, Fu B, et al. Effect of Mn on the microstructure, texture and magnetic properties of high grade non-oriented silicon steel. J Funct Mater, 2021, 52(7): 7072 doi: 10.3969/j.issn.1001-9731.2021.07.012
    [50]
    Nakayama T, Honjou N, Minaga T, et al. Effects of Manganese and sulfur contents and slab reheating temperatures on the magnetic properties of non-oriented semi-processed electrical steel sheet. J Magn Magn Mater, 2001, 234(1): 55 doi: 10.1016/S0304-8853(01)00208-6
    [51]
    Jenkins K, Lindenmo M. Precipitates in electrical steels. J Magn Magn Mater, 2008, 320(20): 2423 doi: 10.1016/j.jmmm.2008.03.062
    [52]
    Qiao J L, Guo F H, Hu J W, et al. Development of thin-gauge low iron loss non-oriented silicon steel. Metall Res Technol, 2021, 118(1): 113 doi: 10.1051/metal/2020091
    [53]
    野田佳彥, 中西匡, 小関新司. 磁性能優良的無方向性電磁鋼板: 日本, P2015-131993A. 2015-7-23

    Oda Y, Tadashi N, Shinji K. Non-Directional Electromagnetic Steel Sheet Having Excellent Magnetic Properties: Japan Patent, P2015-131993A. 2015-7-23
    [54]
    潘振東, 林媛, 侯鵬飛, 等. 實驗室研制含Ni高強度無取向電工鋼 // 第十四屆中國電工鋼學術年會. 寧波, 2017: 104

    Pan Z D, Lin Y, Hou P F, et al. Development of high-strength non-oriented electrical steel containing Ni in laboratory // Proceedings of the 14th Chinese Electrical Steel Academic Annual Conference. Ningbo, 2017: 104
    [55]
    石文敏, 楊光, 馮大軍, 等. 鋯對無取向電工鋼組織, 織構及性能的影響 // 第十一屆中國鋼鐵年會論文集. 北京, 2017: 61

    Shi W M, Yang G, Feng D J, et al. Effect of Zirconium on the microstructure, texture and properties of non-oriented electrical steel // Proceedings of China Iron & Steel Annual Meeting. Beijing, 2017: 61
    [56]
    Nakayama T, Takahashi M. Effects of vanadium on magnetic properties of semi-processed non-oriented electrical steel sheets. J Mater Sci, 1995, 30(23): 5979 doi: 10.1007/BF01151515
    [57]
    Nakayama T, Tanaka T. Effects of titanium on magnetic properties of semi-processed non-oriented electrical steel sheets. J Mater Sci, 1997, 32(4): 1055 doi: 10.1023/A:1018590725223
    [58]
    孔祥兵, 任慧平, 金自力, 等. 退火溫度對Nb-Ti微合金化高強無取向電工鋼析出物及性能的影響. 材料熱處理學報, 2020, 41(8):68 doi: 10.13289/j.issn.1009-6264.2020-0092

    Kong X B, Ren H P, Jin Z L, et al. Influence of annealing temperature on precipitates and properties of Nb-Ti microalloyed high-strength non-oriented electrical steel. Trans Mater Heat Treat, 2020, 41(8): 68 doi: 10.13289/j.issn.1009-6264.2020-0092
    [59]
    孔祥兵. 稀土新能源無取向電工鋼退火工藝的研究[學位論文]. 包頭: 內蒙古科技大學, 2020

    Kong X B. Research on Annealing Process of Non-oriented Electrical Steel for Rare Earth New Energy [Dissertation]. Baotou: Inner Mongolia University of Science & Technology, 2020
    [60]
    王郁倩. 薄帶連鑄高強度無取向電工鋼組織、織構及性能研究[學位論文]. 沈陽: 東北大學, 2019

    Wang Y Q. Research on the Microstructure, Texture and Properties of High Strength Non-oriented Electrical Steel Processed by Strip Casting Method [Dissertation]. Shenyang: Northeastern University, 2019
    [61]
    段軍陽. 薄帶連鑄含鈮高強度無取向硅鋼的組織、織構及性能研究[學位論文]. 沈陽: 東北大學, 2017

    Duan J Y. Study on Microstructure, Texture and Properties of Nb-microalloyed Non-oriented Silicon Steel with High Strength Produced by Strip Casting [Dissertation]. Shenyang: Northeastern University, 2017
    [62]
    Han G, Xie Z J, Xiong L, et al. Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment. Mater Sci Eng A, 2017, 705: 89 doi: 10.1016/j.msea.2017.08.061
    [63]
    Han G, Xie Z J, Lei B, et al. Simultaneous enhancement of strength and plasticity by nano B2 clusters and nano-γ phase in a low carbon low alloy steel. Mater Sci Eng A, 2018, 730: 119 doi: 10.1016/j.msea.2018.05.080
    [64]
    Sun H L, Li D D, Diao Y P, et al. Nanoscale Cu particle evolution and its impact on the mechanical properties and strengthening mechanism in precipitation-hardening stainless steel. Mater Charact, 2022, 188: 111885 doi: 10.1016/j.matchar.2022.111885
    [65]
    Fu W, Li C N, Di X J, et al. Improvement of Cu-rich precipitation strengthening for high-strength low carbon steel strengthened via Ti-microalloying. Mater Lett, 2022, 316: 132031 doi: 10.1016/j.matlet.2022.132031
    [66]
    Fang F, Che S F, Hou D W, et al. Thin-gauge non-oriented silicon steel with balanced magnetic and mechanical properties processed by strip casting. Mater Sci Eng A, 2022, 831: 142284 doi: 10.1016/j.msea.2021.142284
    [67]
    Fang F, Hou D W, Wang Z L, et al. Microstructure characteristics and strengthening behavior of Cu-bearing non-oriented silicon steel: Conventional process versus strip casting. Metals, 2021, 11(11): 1815 doi: 10.3390/met11111815
    [68]
    Hou D W, Fang F, Wang Y, et al. Nanoprecipitation behavior and resultant mechanical and magnetic properties in Fe–Si–Ni–Al–Mn high strength non-oriented silicon steel. Mater Sci Eng A, 2021, 819: 141529 doi: 10.1016/j.msea.2021.141529
    [69]
    Bian X H, Zeng Y P, Nan D, et al. The effect of copper precipitates on the recrystallization textures and magnetic properties of non-oriented electrical steels. J Alloys Compd, 2014, 588: 108 doi: 10.1016/j.jallcom.2013.11.010
    [70]
    Wu M, Zeng Y P. Effect of copper precipitates on the stability of microstructures and magnetic properties of non-oriented electrical steels. J Magn Magn Mater, 2015, 391: 96 doi: 10.1016/j.jmmm.2015.04.085
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)

    Article views (426) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164