<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
XIN Tongze, WANG Min, BAO Yanping. Research progress of converter splash mechanism and prediction model technology[J]. Chinese Journal of Engineering, 2023, 45(10): 1716-1728. doi: 10.13374/j.issn2095-9389.2022.08.18.002
Citation: XIN Tongze, WANG Min, BAO Yanping. Research progress of converter splash mechanism and prediction model technology[J]. Chinese Journal of Engineering, 2023, 45(10): 1716-1728. doi: 10.13374/j.issn2095-9389.2022.08.18.002

Research progress of converter splash mechanism and prediction model technology

doi: 10.13374/j.issn2095-9389.2022.08.18.002
More Information
  • Corresponding author: E-mail: wangmin@ustb.edu.cn
  • Received Date: 2022-08-18
    Available Online: 2022-12-14
  • Publish Date: 2023-10-25
  • As a high-temperature, high-pressure, multi-phase reaction vessel, the converter is vulnerable to splashing or slag overflow. Good molten pool surge can expand the slag–gold reaction area and enhance steelmaking efficiency. Abnormal molten pool surge can cause metal loss, damage the furnace body and its auxiliary equipment, and even threaten the personal safety of workers working in front of the furnace. This paper summarizes the previous research findings on splashing mechanisms and influencing factors. According to the occurrence principle, converter splashes can be classified into explosive splashes, foam splashes, metallic splashes, and other splashes, among which explosive splashes are the most dangerous and foam splashes occur most frequently. The occurrence of splashing accidents can be generally attributed to the high-temperature melt splashing caused by bubbles produced during the vigorous chemical reaction in the furnace and the splashing produced by the flow energy generated during the top–bottom combined blowing of the molten pool. The influencing factors of splashing are discussed based on six aspects: loading system, slag making system, oxygen supply system, bottom blowing system, temperature system, and safety system, and the foam of slag, oxygen lance blowing parameters, and bottom blowing parameters are thoroughly examined. It is observed that the occurrence of a splashing accident is frequently caused by the coupling of multiple factors. It is mainly one-sided, and hence the cause of the splashing accident cannot be unilaterally analyzed. Currently, no methods are present that can effectively quantify the effect of each factor on the splashing. Thus, developing a set of safety evaluation models suitable for converter splashing is imperative. Furthermore, the author summarizes the existing splash prediction models, examines the benefits and drawbacks of some splash prediction models, and summarizes the prediction principles and some application outcomes of the furnace gas analysis, audio analysis, and image analysis methods. Although preliminary progress has been made in the study of prediction models, there are still challenges that need to be overcome. It is pointed out that the reason why the existing prediction models have not been widely used is due to the low prediction accuracy, short prediction time, high cost, and low practicability. Several researchers have used a combination of several models to predict splash in converter. The findings reveal that various models can learn from each other, and the prediction accuracy of the comprehensive model is higher than that of the single model. Furthermore, the splash prediction model will become more intelligent and refined in the future.

     

  • loading
  • [1]
    鄭杰. 萊鋼90 t轉爐噴濺原因分析與對策. 山東冶金, 2011, 33(3): 12 doi: 10.3969/j.issn.1004-4620.2011.03.005

    Zheng J. Analyses of the slopping cause of 90 t converter in Laiwu steel and the countermeasures. Shandong Metall, 2011, 33(3): 12 doi: 10.3969/j.issn.1004-4620.2011.03.005
    [2]
    胡國新. 轉爐吹煉噴濺的預測和預防探討. 武漢工程職業技術學院學報, 2007, 19(3): 17 doi: 10.3969/j.issn.1671-3524.2007.03.005

    Hu G X. Inquiry into prediction and prevention of splash in steel making. J Wuhan Eng Inst, 2007, 19(3): 17 doi: 10.3969/j.issn.1671-3524.2007.03.005
    [3]
    胡文華, 孫前進. 中小轉爐噴濺的預防與控制//2008年全國煉鋼——連鑄生產技術會議. 杭州, 2008: 206

    Hu W H, Sun Q J. Prevention and control of splashing in medium and small converter // 2008 National Steel Making Continuous Casting Production Technology Conference. Hangzhou, 2008: 206
    [4]
    興超, 姚娜, 張利武. 泡沫渣抑制劑在60 t轉爐煉鋼生產中的應用. 特殊鋼, 2019, 40(2): 46 doi: 10.3969/j.issn.1003-8620.2019.02.013

    Xing C, Yao N, Zhang L W. Application of foam slag inhibitor in 60 t converter steelmaking production. Spec Steel, 2019, 40(2): 46 doi: 10.3969/j.issn.1003-8620.2019.02.013
    [5]
    郭傳奇, 劉謙. 優化過程槍位控制減少復吹轉爐煉鋼噴濺. 中國冶金, 2015, 25(3): 45

    Guo C Q, Liu Q. Optimization process oxygen lance position control to reduce the splash of the blowing BOF steelmaking. China Metall, 2015, 25(3): 45
    [6]
    占海濤. 轉爐鋼渣噴濺傷人的分析與應對措施//2015中國金屬學會冶金安全與健康年會. 湘潭, 2015: 112

    Zhan H T. Analysis and Countermeasures of steel slag splashing injury in converter // 2015 Annual Meeting of Metallurgical Safety and Health of China Metal Society. Xiangtan, 2015: 112
    [7]
    張啟明. 轉爐噴濺的機理及控制措施. 福建冶金, 2018, 47(1): 33 doi: 10.3969/j.issn.1672-7665.2018.01.011

    Zhang Q M. Converter splattering mechanism and control measure. Fujian Metall, 2018, 47(1): 33 doi: 10.3969/j.issn.1672-7665.2018.01.011
    [8]
    王慧. 轉爐煉鋼噴濺現象的成因分析和預防措施. 科技與創新, 2014(17): 2 doi: 10.3969/j.issn.2095-6835.2014.17.002

    Wang H. BOF splash phenomenon causes analysis and preventive measures. Sci Technol Innov, 2014(17): 2 doi: 10.3969/j.issn.2095-6835.2014.17.002
    [9]
    孫貴平, 郭忠, 孫巧梅, 等. 宣鋼110噸轉爐噴濺產生的原因與控制//河北省2010年煉鋼—連鑄—軋鋼生產技術與學術交流會. 邯鄲, 2010: 305

    Sun G P, Guo Z, Sun Q M, et al. Causes and control of splashing in 110 t converter of Xuanhua Steel // Hebei Province 2010 Steel Making Continuous Casting Rolling Production Technology and Academic Exchange Meeting. Handan, 2010: 305
    [10]
    占海濤, 王光進, 耿恒亮, 等. 轉爐噴濺發生的原理與應對措施//中南泛珠三角煉鋼連鑄學術交流會. 武漢, 2010: 200

    Zhan H T, Wang G J, Geng H L, et al. Principle and countermeasures of converter splashing // South Central Pan Pearl River Delta Steel Making and Continuous Casting Academic Exchange Meeting. Wuhan, 2010: 200
    [11]
    Br?mming M, Engstr?m F, Samuelsson C, et al. Characterization of slag-metal emulsion and its impact on foaming behavior and slopping in the LD process. Steel Res Int, 2018, 90(2): 1800269
    [12]
    王杰, 曾加慶, 楊利彬. 煉鋼過程中熔渣泡沫化的研究現狀. 中國冶金, 2016, 26(9): 1

    Wang J, Zeng J Q, Yang L B. Research status of slag foaming behaviors during steelmaking process. China Metall, 2016, 26(9): 1
    [13]
    Lotun D, Pilon L. Physical modeling of slag foaming for various operating conditions and slag compositions. ISIJ Int, 2005, 45(6): 835 doi: 10.2355/isijinternational.45.835
    [14]
    程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面現象. 工程科學學報, 2018, 40(10): 1139

    Cheng L M, Zhang L F, Shen P. Interfacial phenomena in ironmaking and steelmaking. Chin J Eng, 2018, 40(10): 1139
    [15]
    王三忠, 李文山, 呂亞. 轉爐煉鋼噴濺的控制及預防措施. 河南冶金, 2009, 17(4): 32 doi: 10.3969/j.issn.1006-3129.2009.04.011

    Wang S Z, Li W S, Lv Y. Control and preventive measures for preventing splash in the steelmaking in angang. Henan Metall, 2009, 17(4): 32 doi: 10.3969/j.issn.1006-3129.2009.04.011
    [16]
    Jung S M, Fruehan R J. Foaming characteristics of BOF slags. ISIJ Int, 2000, 40(4): 348 doi: 10.2355/isijinternational.40.348
    [17]
    Kim H S, Min D J, Park J H. Foaming behavior of CaO–SiO2–FeO–MgOsatd–X (X=Al2O3, MnO, P2O5, and CaF2) slags at high temperatures. ISIJ Int, 2001, 41(4): 317
    [18]
    郭龍鑫, 龐洪軒, 鄭冰, 等. 260 t頂底復吹轉爐噴濺特征的水模型研究和應用. 特殊鋼, 2022, 43(1): 11 doi: 10.3969/j.issn.1003-8620.2022.01.003

    Guo L X, Pang H X, Zheng B, et al. Study of water model on splashing characteristics of 260 t top and bottom combined blown converter and application. Spec Steel, 2022, 43(1): 11 doi: 10.3969/j.issn.1003-8620.2022.01.003
    [19]
    李琳, 李明明, 李強, 等. 漩流氧槍轉爐煉鋼熔體的噴濺行為. 鋼鐵, 2020, 55(6): 54

    Li L, Li M M, Li Q, et al. Melt splashing behavior of steelmaking converter with nozzle-twisted lance. Iron Steel, 2020, 55(6): 54
    [20]
    鄧麗琴, 李明明, 李強, 等. 煉鋼轉爐噴濺行為的數值模擬. 材料與冶金學報, 2016, 15(1): 25

    Deng L Q, Li M M, Li Q, et al. Numerical modeling on splashing behavior of steelmaking converter. J Mater Metall, 2016, 15(1): 25
    [21]
    Alam M, Naser J, Brooks G, et al. A computational fluid dynamics model of shrouded supersonic jet impingement on a water surface. ISIJ Int, 2012, 52(6): 1026 doi: 10.2355/isijinternational.52.1026
    [22]
    劉福海, 朱榮, 董凱, 等. 拉瓦爾噴管結構模式對超音速射流流動特性的影響. 工程科學學報, 2020, 42(S1): 54

    Liu F H, Zhu R, Dong K, et al. Effect of Laval nozzle structure on behaviors of supersonic oxygen jet flow field. Chin J Eng, 2020, 42(S1): 54
    [23]
    宋健, 解文中, 孫波, 等. 120 t轉爐氧槍噴頭參數優化與應用. 煉鋼, 2022, 38(1): 14 doi: 10.3969/j.issn.1002-1043.2022.1.lg202201003

    Song J, Xie W Z, Sun B, et al. Design and application of 120 t converter oxygen lance nozzle. Steelmaking, 2022, 38(1): 14 doi: 10.3969/j.issn.1002-1043.2022.1.lg202201003
    [24]
    Higuchi Y, Tago Y. Effect of nozzle twisted lance on jet behavior and spitting rate in top blown process. ISIJ Int, 2003, 43(9): 1410 doi: 10.2355/isijinternational.43.1410
    [25]
    楊文遠, 張先貴, 呂英華, 等. 轉爐供氧參數對噴濺的影響. 鋼鐵, 2012, 47(11): 32 doi: 10.13228/j.boyuan.issn0449-749x.2012.11.015

    Yang W Y, Zhang X G, Lü Y H, et al. Effects of oxygen supply on splashing of BOF. Iron Steel, 2012, 47(11): 32 doi: 10.13228/j.boyuan.issn0449-749x.2012.11.015
    [26]
    馬德賓. 260 t轉爐氧槍參數優化效果研究. 冶金能源, 2021, 40(2): 33 doi: 10.3969/j.issn.1001-1617.2021.02.007

    Ma D B. Optimization of oxygen lance parameters for 260 t converter. Energy Metall Ind, 2021, 40(2): 33 doi: 10.3969/j.issn.1001-1617.2021.02.007
    [27]
    楊文遠, 馮超, 王明林, 等. 大型轉爐高供氧強度吹煉的水模實驗. 鋼鐵研究學報, 2017, 29(10): 807 doi: 10.13228/j.boyuan.issn1001-0963.20160324

    Yang W Y, Feng C, Wang M L, et al. Water model experiment of high supplying oxygen blowing in large converter. J Iron Steel Res, 2017, 29(10): 807 doi: 10.13228/j.boyuan.issn1001-0963.20160324
    [28]
    呂長海, 張紅軍, 鄭從杰, 等. 轉爐氧槍槍位對熔池作用規律研究. 有色金屬科學與工程, 2020, 11(1): 20

    Lyu C H, Zhang H J, Zheng C J, et al. Research on the effect of lance height change of converter oxygen lance on the molten pool. Nonferrous Met Sci Eng, 2020, 11(1): 20
    [29]
    Luomala M J, Fabritius T M J, Virtanen E O, et al. Splashing and spitting behaviour in the combined blown steelmaking converter. ISIJ Int, 2002, 42(9): 944 doi: 10.2355/isijinternational.42.944
    [30]
    Amano S, Sato S, Takahashi Y, et al. Effect of top and bottom blowing conditions on spitting in converter. Eng Rep, 2021, 3(12): e12406
    [31]
    Li M M, Li Q, Zou Z S, et al. Characterization of cavity oscillation and splashing distribution under excitation by bottom gas blowing in a steelmaking converter. JOM, 2018, 71(2): 729
    [32]
    顧兆祖, 呂愛強. 轉爐前期噴濺的原因及預防措施//2015年煉鋼品種、質量提升研討會. 濟南, 2015: 81

    Gu Z Z, Lv A Q. Causes and preventive measures of splashing in the early stage of converter // 2015 Steel Making Variety and Quality Improvement Seminar. Jinan, 2015: 81
    [33]
    肖虎. 轉爐冶煉前期噴濺的控制. 冶金叢刊, 2012(3): 17

    Xiao H. Early splashing control in converter steelmaking. Metall Collect, 2012(3): 17
    [34]
    王子亮, 陳華知. 轉爐煉鋼爆炸和熔融物噴濺事故分析. 河南冶金, 1998(4): 63

    Wang Z L, Chen H Z. Analysis of explosion and melt splashing accident in converter steelmaking. Henan Metall, 1998(4): 63
    [35]
    Deo B, Overbosch A, Snoeijer B, et al. Control of slag formation, foaming, slopping, and chaos in BOF. Trans Indian Inst Met, 2013, 66(5): 543
    [36]
    Br?mming M. An Operational View on Foaming and Slopping Control in Top-Blown BOS Vessels [Dissertation]. Lulea: Lule? Tekniska Universitet, 2015
    [37]
    Kattenbelt C. Modeling and Optimization of Slopping Prevention and Batch Time Reduction in Basic Oxygen Steelmaking [Dissertation]. Enschede: University of Twente, 2008
    [38]
    Evestedt M, Medvedev A, Thorén M, et al. Slopping warning system for the ld converter process - an extended evaluation study. IFAC Proc Vol, 2007, 40(11): 267 doi: 10.3182/20070821-3-CA-2919.00040
    [39]
    Br?mming M, Bj?rkman B, Samuelsson C. BOF process control and slopping prediction based on multivariate data analysis. Steel Res Int, 2016, 87(3): 301 doi: 10.1002/srin.201500040
    [40]
    林文輝, 焦樹強, 孫建坤, 等. 轉爐吹煉后期碳含量預報的改進指數模型. 工程科學學報, 2020, 42(7): 854

    Lin W H, Jiao S Q, Sun J K, et al. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter. Chin J Eng, 2020, 42(7): 854
    [41]
    萬雪峰. 基于爐氣分析的轉爐動態預測模型[學位論文]. 遼寧: 東北大學, 2006

    Wan X F. Dynamic Prediction Model of Converter Based on Furnace Gas Analysis [Dissertation]. Liaoning: Northeastern University, 2006
    [42]
    胡志剛, 劉瀏, 何平. 爐氣分析在轉爐動態控制中的應用. 鋼鐵研究學報, 2002(3): 68 doi: 10.3321/j.issn:1001-0963.2002.03.016

    Hu Z G, Liu L, He P. Application of gas analysis in converter dynamic control. J Iron Steel Res, 2002(3): 68 doi: 10.3321/j.issn:1001-0963.2002.03.016
    [43]
    胡志剛, 劉瀏, 何平, 等. 150 t轉爐利用爐氣分析進行噴濺預報及控制. 鋼鐵, 2004(2): 18 doi: 10.3321/j.issn:0449-749X.2004.02.005

    Hu Z G, Liu L, He P, et al. Slopping prediction and control on 150 t bof by off-gas analysis. Iron Steel, 2004(2): 18 doi: 10.3321/j.issn:0449-749X.2004.02.005
    [44]
    萬雪峰, 張貴玉, 林東, 等. 轉爐爐氣成分變化規律的初步研究. 中國冶金, 2006(1): 23 doi: 10.3969/j.issn.1006-9356.2006.01.007

    Wan X F, Zhang G Y, Lin D, et al. Variation rule of off-gas component in BOF. China Metall, 2006(1): 23 doi: 10.3969/j.issn.1006-9356.2006.01.007
    [45]
    孫承碧, 劉南, 楊小龍. 利用CO濃度曲線監控轉爐造渣工藝實踐. 包鋼科技, 2021, 47(1): 38 doi: 10.3969/j.issn.1009-5438.2021.01.012

    Sun C B, Liu N, Yang X L. Practice on monitoring scorification technology of converter with CO concentration curve. Sci Technol Baotou Steel, 2021, 47(1): 38 doi: 10.3969/j.issn.1009-5438.2021.01.012
    [46]
    張立君. 基于轉爐CO氣體分析的煉鋼噴濺控制技術. 山西冶金, 2020, 43(6): 127 doi: 10.16525/j.cnki.cn14-1167/tf.2020.06.49

    Zhang L J. Steel-making splash control technology based on converter CO gas analysis. Shanxi Metall, 2020, 43(6): 127 doi: 10.16525/j.cnki.cn14-1167/tf.2020.06.49
    [47]
    梁三清, 劉小剛, 陳帥, 等. 轉爐爐氣CO分析在煉鋼過程中的應用. 中國冶金, 2018, 28(12): 48

    Liang S Q, Liu X G, Chen S, et al. Application of converter gas CO analysis in steelmaking process. China Metall, 2018, 28(12): 48
    [48]
    張大勇, 張彩軍, 徐志榮. 音頻化渣技術在150 t復吹轉爐上的開發與應用. 中國冶金, 2007(8): 20 doi: 10.3969/j.issn.1006-9356.2007.08.006

    Zhang D Y, Zhang C J, Xu Z R. Exploitation and application of audio frequency slag melting in 150 t combined blowing converter. China Metall, 2007(8): 20 doi: 10.3969/j.issn.1006-9356.2007.08.006
    [49]
    楊尚寶, 張叔和. 轉爐造渣的聲納監控方法. 北京科技大學學報, 1995(3): 229

    Yang S B, Zhang S H. Sonar monitored method for slag-making in converter. J Univ Sci Technol Beijing, 1995(3): 229
    [50]
    蔣曉放, 劉春華, 謝良德. 寶鋼300 t轉爐音平控渣技術的開發與應用. 寶鋼技術, 2000(2): 41

    Jiang X F, Liu C H, Xie L D. Development and application of the sonic slag technology for 300 t converter at baosteel. Bao Steel Technol, 2000(2): 41
    [51]
    劉忠建. 在線控制爐渣技術實踐. 冶金叢刊, 2016(3): 46

    Liu Z J. Practice of on-line control of slag technology. Metall Collect, 2016(3): 46
    [52]
    李繼勇. 音頻化渣技術在重鋼復吹轉爐上的應用. 科學與財富, 2019(19): 197

    Li J Y. Application of audio frequency slagging technology in combined blowing converter of Chongqing Iron and Steel Co. Sci Wealth, 2019(19): 197
    [53]
    龐殊楊, 王姝洋, 賈鴻盛. 基于殘差神經網絡實現轉爐火焰狀態識別. 冶金自動化, 2021, 45(1): 34

    Pang S Y, Wang S Y, Jia H S. Recognition of converter flame state based on ResNet neural network. Metall Ind Autom, 2021, 45(1): 34
    [54]
    Ghosh B. Opto-Acoustic Slopping Prediction System in Basic Oxygen Furnace Converters [Dissertation]. Stockholm: KTH Royal Institute of Technology, 2017
    [55]
    Batista L G, Salarolli P F, de Menezes R P, et al. Slopping detection system for LD converters using sound signal digital and image processing // 2018 13th IEEE International Conference on Industry Applications (INDUSCON). Sao Paulo, 2018: 1137
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article views (193) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164