Citation: | WANG Yuke, CHEN Yuyuan, SHAO Jinggan, SONG Yingbin, ZHONG Yanhui. Experimental study on the triaxial static shear characteristics of Yellow River silt under different initial states[J]. Chinese Journal of Engineering, 2023, 45(10): 1782-1794. doi: 10.13374/j.issn2095-9389.2022.08.16.004 |
[1] |
安催花, 郭選英, 吳海亮, 等. 黃河泥沙處理和利用配置方案研究. 人民黃河, 2013, 35(10):54 doi: 10.3969/j.issn.1000-1379.2013.10.018
An C H, Guo X Y, Wu H L, et al. Study on configuration scheme of sediment treatment and utilization of the Yellow River. Yellow River, 2013, 35(10): 54 doi: 10.3969/j.issn.1000-1379.2013.10.018
|
[2] |
林學鈺, 廖資生, 蘇小四, 等. 黃河流域地下水資源及其開發利用對策. 吉林大學學報(地球科學版), 2006, 36(5):677
Lin X Y, Liao Z S, Su X S, et al. Groundwater resources and their countermeasures of development and utilization in Yellow River Basin. J Jilin Univ (Earth Sci Ed), 2006, 36(5): 677
|
[3] |
王軍, 姚仕明, 周銀軍. 我國河流泥沙資源利用的發展與展望. 泥沙研究, 2019, 44(1):73 doi: 10.16239/j.cnki.0468-155x.2019.01.011
Wang J, Yao S M, Zhou Y J. Review on river sediment resources utilization in China. J Sediment Res, 2019, 44(1): 73 doi: 10.16239/j.cnki.0468-155x.2019.01.011
|
[4] |
He H T, Yue Q Y, Su Y, et al. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud. J Hazard Mater, 2012, 203-204: 53 doi: 10.1016/j.jhazmat.2011.11.095
|
[5] |
Jiang S, Xu J X, Song Y B, et al. Effect of calcination pretreatment on mechanical properties of alkali-activated artificial stone incorporating Yellow River silt. J Clean Prod, 2022, 364: 132682 doi: 10.1016/j.jclepro.2022.132682
|
[6] |
楊麗艷, 馬鑫, 梅銳鋒, 等. 黃河流域沉沙池泥沙制備陶粒及其性能研究. 無機鹽工業, 2022, 54(5):109
Yang L Y, Ma X, Mei R F, et al. Study on preparation and performance of ceramsite from sediment in Yellow River desilting basin. Inorg Chem Ind, 2022, 54(5): 109
|
[7] |
Zhang X N, Sun H, Jiang P, et al. Development and performance characterization of a composite dust suppressant for Yellow River alluvial silt using response surface methodology. J Clean Prod, 2022, 376: 134293 doi: 10.1016/j.jclepro.2022.134293
|
[8] |
Zhang H B, Liu M P, Shuo Z, et al. An experimental investigation of the triaxial shear behaviors of silt-based foamed concrete. Case Stud Constr Mater, 2021, 15: e00713
|
[9] |
Wang B M, Li G N, Han J N, et al. Study on the properties of artificial flood-prevention stone made by Yellow River silt. Constr Build Mater, 2017, 144: 484 doi: 10.1016/j.conbuildmat.2017.03.206
|
[10] |
Zhan J, He Y J, Zhao G Z, et al. Quantitative evaluation of the spatial variation of surface soil properties in a typical alluvial plain of the lower Yellow River using classical statistics, geostatistics and single fractal and multifractal methods. Appl Sci, 2020, 10(17): 5796 doi: 10.3390/app10175796
|
[11] |
Zhang J R, Meng Q S, Zhang Y, et al. Effect of penetration rates on the piezocone penetration test in the Yellow River Delta silt. J Ocean Univ China, 2022, 21(2): 361 doi: 10.1007/s11802-022-4934-1
|
[12] |
Du X, Sun Y F, Song Y P, et al. In-situ observation of wave-induced pore water pressure in seabed silt in the Yellow River Estuary of China. J Mar Environ Eng, 2021, 10(4): 305
|
[13] |
Liu X L, Zhang M S, Zhang H, et al. Physical and mechanical properties of loess discharged from the Yellow River into the Bohai Sea, China. Eng Geol, 2017, 227: 4 doi: 10.1016/j.enggeo.2017.04.019
|
[14] |
Zhang H, Liu X L, Jia Y G, et al. Rapid consolidation characteristics of Yellow River-derived sediment: Geotechnical characterization and its implications for the deltaic geomorphic evolution. Eng Geol, 2020, 270: 105578 doi: 10.1016/j.enggeo.2020.105578
|
[15] |
趙然杭, 華麗麗, 劉恒洋, 等. 黃河泥沙用于高速公路路基填筑的可行性研究. 人民黃河, 2021, 43(2):122 doi: 10.3969/j.issn.1000-1379.2021.02.025
Zhao R H, Hua L L, Liu H Y, et al. Feasibility study on Yellow River sediment used in subgrade filling of expressway. Yellow River, 2021, 43(2): 122 doi: 10.3969/j.issn.1000-1379.2021.02.025
|
[16] |
袁玉卿, 李偉, 郭濤, 等. 豫東黃泛區粉砂土的水穩定性研究. 河南大學學報(自然科學版), 2015, 45(2):235
Yuan Y Q, Li W, Guo T, et al. Study on water stability of silty soil in eastern Henan section formerly flooded by the Yellow River. J Henan Univ (Nat Sci), 2015, 45(2): 235
|
[17] |
袁玉卿, 周婧, 宋寬, 等. 豫東黃泛區粉砂土工程性質試驗. 河南大學學報(自然科學版), 2020, 50(5):602
Yuan Y Q, Zhou J, Song K, et al. Test on engineering properties of silty soil in Yellow River flooded area of eastern Henan. J Henan Univ (Nat Sci), 2020, 50(5): 602
|
[18] |
劉萌成, 胡帥峰, 戴鵬飛. 南海鈣質砂不排水剪切特性三軸試驗. 中國公路學報, 2022, 35(4):69 doi: 10.3969/j.issn.1001-7372.2022.04.004
Liu M C, Hu S F, Dai P F. Investigation on shear behavior of calcareous sand in South China Sea in undrained triaxial tests. China J Highw Transp, 2022, 35(4): 69 doi: 10.3969/j.issn.1001-7372.2022.04.004
|
[19] |
易梅輝. 紅砂巖粗粒土的靜力特性與顆粒破碎特征[學位論文]. 湘潭: 湖南科技大學, 2020
Yi M H. Static Characteristics and Particle Crushing Characteristics of Coarse-grained Soil of Red Sandstone [Dissertation]. Xiangtan: Hunan University of Science and Technology, 2020
|
[20] |
殷坤垚. 軟巖填料顆粒破碎及濕化變形特性研究[學位論文]. 西安: 長安大學, 2020
Yin K Y. Study on Particle Crushing and Wetting Deformation Characteristics of Soft Rock Filler [Dissertation]. Xi'an: Changan University, 2020
|
[21] |
馬瑩. 干濕循環作用下榆中黃土路基變形特性試驗研究[學位論文]. 蘭州: 蘭州交通大學, 2020
Ma Y. Experimental Study on Deformation Characteristics of Loess Subgrade in Yuzhong under Dry-wet Cycle [Dissertation]. Lanzhou: Lanzhou Jiatong University, 2020
|
[22] |
聶如松, 董俊利, 程龍虎, 等. 重載鐵路基床填料低圍壓靜三軸試驗研究. 鐵道科學與工程學報, 2019, 16(11):2707
Nie R S, Dong J L, Cheng L H, et al. The study on static triaxial test of heavy haul railway filler of subgrade roadbed under low confining pressure. J Railw Sci Eng, 2019, 16(11): 2707
|
[23] |
陳志明, 金明東, 徐永福, 等. 水泥固化吹填海砂的強度特性. 環境科學與技術, 2018, 41(4):22
Chen Z M, Jin M D, Xu Y F, et al. Strength characteristics of cement stabilized sea sand. Environ Sci Technol, 2018, 41(4): 22
|
[24] |
王啟云, 張家生, 鄧國棟, 等. 高速鐵路路基粗粒土B組填料剪脹特性的大型三軸試驗研究. 鐵道科學與工程學報, 2015, 12(4):731 doi: 10.3969/j.issn.1672-7029.2015.04.003
Wang Q Y, Zhang J S, Deng G D, et al. Large-scale triaxial test study on shear dilatancy of subgrade filler of group B coarse-grained soil of high speed railway. J Railw Sci Eng, 2015, 12(4): 731 doi: 10.3969/j.issn.1672-7029.2015.04.003
|
[25] |
程澤海, 宋澤源, 黃博, 等. 含石量與含泥量對壓實礫石土力學特性影響的試驗. 中國公路學報, 2018, 31(8):47 doi: 10.3969/j.issn.1001-7372.2018.08.005
Cheng Z H, Song Z Y, Huang B, et al. Experiment of influence of stone content and clay content on mechanical properties of compacted gravelly soil. China J Highw Transp, 2018, 31(8): 47 doi: 10.3969/j.issn.1001-7372.2018.08.005
|
[26] |
Wang Y K, Cao T C, Shao J G, et al. Experimental study on static characteristics of the Yellow River silt under (triaxial) consolidated undrained conditions. Mar Georesources Geotechnol, 2023, 41(3): 285 doi: 10.1080/1064119X.2022.2030827
|
[27] |
任杰. 高壓三軸試驗下福建標準砂的力學特性[學位論文]. 吉林: 東北電力大學, 2018
Ren J. Mechanical Properties of Fujian Standard Sand under High Pressure Triaxial Test [Dissertation]. Jilin: Northeast Dianli University, 2018
|
[28] |
相盈盈. 珊瑚礁鈣質砂剪切特性三軸試驗研究[學位論文]. 杭州: 浙江工業大學, 2020
Xiang Y Y. Triaxial Test Study on Shear Characteristics of Calcareous Sand in Coral Reefs [Dissertation]. Hangzhou: Zhejiang University of Technology, 2020
|
[29] |
Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found, 1975, 15(1): 29 doi: 10.3208/sandf1972.15.29
|
[30] |
Andersen K H, Schjetne K. Database of friction angles of sand and consolidation characteristics of sand, silt, and clay. J Geotech Geoenviron Eng, 2013, 139(7): 1140 doi: 10.1061/(ASCE)GT.1943-5606.0000839
|
[31] |
Liu M C, Liu H L, Gao Y F. New double yield surface model for coarse granular materials incorporating nonlinear unified failure criterion. J Cent South Univ, 2012, 19(11): 3236 doi: 10.1007/s11771-012-1400-z
|
[32] |
Baker R. Nonlinear Mohr envelopes based on triaxial data. J Geotech Geoenviron Eng, 2004, 130(5): 498 doi: 10.1061/(ASCE)1090-0241(2004)130:5(498)
|
[33] |
Sadrekarimi A, Olson S M. Critical state friction angle of sands. Géotechnique, 2011, 61(9): 771
|
[34] |
Wu Y, Yamamoto H, Cui J, et al. Influence of load mode on particle crushing characteristics of silica sand at high stresses. Int J Geomech, 2020, 20(3): 04019194 doi: 10.1061/(ASCE)GM.1943-5622.0001600
|
[35] |
Xiao Y, Liu H L, Chen Y M, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I:Influences of density and pressure. J Geotech Geoenviron Eng, 2014, 140(12): 04014070
|
[36] |
Yu F W, Su L J. Particle breakage and the mobilized drained shear strengths of sand. J Mt Sci, 2016, 13(8): 1481 doi: 10.1007/s11629-016-3870-1
|
[37] |
Alps M. The Phase Transformation Friction Angle of Sand [Dissertation]. Las Vegas: University of Nevada, 2007
|
[38] |
Zhang H Q, Tannant D D, Jing H W, et al. Evolution of cohesion and friction angle during microfracture accumulation in rock. Nat Hazards, 2015, 77(1): 497 doi: 10.1007/s11069-015-1592-2
|
[39] |
Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils. J Soil Mech And Found Div, 1970, 96(5): 1629 doi: 10.1061/JSFEAQ.0001458
|