Citation: | FANG Shizheng, YANG Renshu, LI Weiyu, LI Yongliang, YANG Yang. Investigation of dynamic fracture characteristics of frozen red sandstone using notched semi-circular bend method[J]. Chinese Journal of Engineering, 2023, 45(10): 1704-1715. doi: 10.13374/j.issn2095-9389.2022.08.15.005 |
[1] |
Kawamura H, Hatano T, Kato N, et al. Statistical physics of fracture, friction, and earthquakes. Rev Mod Phys, 2012, 84(2): 839 doi: 10.1103/RevModPhys.84.839
|
[2] |
Zhang K, Cao P, Meng J J, et al. Modeling the progressive failure of jointed rock slope using fracture mechanics and the strength reduction method. Rock Mech Rock Eng, 2015, 48(2): 771 doi: 10.1007/s00603-014-0605-x
|
[3] |
Brideau M A, Yan M, Stead D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology, 2009, 103(1): 30 doi: 10.1016/j.geomorph.2008.04.010
|
[4] |
Ding C X, Yang R S, Chen C, et al. Space-time effect of blasting stress wave and blasting gas on rock fracture based on a cavity charge structure. Int J Rock Mech Min Sci, 2022, 160: 105238 doi: 10.1016/j.ijrmms.2022.105238
|
[5] |
Yan Z L, Dai F, Zhu J B, et al. Dynamic cracking behaviors and energy evolution of multi-flawed rocks under static pre-compression. Rock Mech Rock Eng, 2021, 54(9): 5117 doi: 10.1007/s00603-021-02564-2
|
[6] |
Guan J F, Yuan P, Li L L, et al. Rock fracture with statistical determination of fictitious crack growth. Theor Appl Fract Mech, 2021, 112: 102895 doi: 10.1016/j.tafmec.2021.102895
|
[7] |
Saboori B, Ayatollahi M R. A novel test configuration designed for investigating mixed mode II/III fracture. Eng Fract Mech, 2018, 197: 248 doi: 10.1016/j.engfracmech.2018.04.048
|
[8] |
Asem P, Wang X R, Hu C, et al. On tensile fracture of a brittle rock. Int J Rock Mech Min Sci, 2021, 144: 104823 doi: 10.1016/j.ijrmms.2021.104823
|
[9] |
Adachi J, Siebrits E, Peirce A, et al. Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci, 2007, 44(5): 739 doi: 10.1016/j.ijrmms.2006.11.006
|
[10] |
Wang Q Z, Yang J R, Zhang C G, et al. Sequential determination of dynamic initiation and propagation toughness of rock using an experimental–numerical–analytical method. Eng Fract Mech, 2015, 141: 78 doi: 10.1016/j.engfracmech.2015.04.025
|
[11] |
Gao G, Yao W, Xia K, et al. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method. Eng Fract Mech, 2015, 138: 146 doi: 10.1016/j.engfracmech.2015.02.021
|
[12] |
Zuo J P, Wei X, Pei J L, et al. Investigation of meso-failure behaviors of Jinping marble using SEM with bending loading system. J Rock Mech Geotech Eng, 2015, 7(5): 593 doi: 10.1016/j.jrmge.2015.06.009
|
[13] |
Chen R, Li K, Xia K W, et al. Dynamic fracture properties of rocks subjected to static pre-load using notched semi-circular bend method. Rock Mech Rock Eng, 2016, 49(10): 3865 doi: 10.1007/s00603-016-0958-4
|
[14] |
Zhou Z L, Cai X, Ma D, et al. Water saturation effects on dynamic fracture behavior of sandstone. Int J Rock Mech Min Sci, 2019, 114: 46 doi: 10.1016/j.ijrmms.2018.12.014
|
[15] |
Tian W L, Yang S Q, Xie L X, et al. Cracking behavior of three types granite with different grain size containing two non-coplanar fissures under uniaxial compression. Arch Civ Mech Eng, 2018, 18(4): 1580 doi: 10.1016/j.acme.2018.06.001
|
[16] |
Leite J P B, Slowik V, Apel J. Computational model of mesoscopic structure of concrete for simulation of fracture processes. Comput Struct, 2007, 85(17-18): 1293 doi: 10.1016/j.compstruc.2006.08.086
|
[17] |
Xu Y, Dai F, Xu N W, et al. Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing. Rock Mech Rock Eng, 2016, 49(3): 731 doi: 10.1007/s00603-015-0787-x
|
[18] |
Li X F, Zhang Q B, Li H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading. Rock Mech Rock Eng, 2018, 51(12): 3785 doi: 10.1007/s00603-018-1566-2
|
[19] |
Mahanta B, Singh T N, Ranjith P G. Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol, 2016, 210: 103 doi: 10.1016/j.enggeo.2016.06.008
|
[20] |
Zhang Z X, Yu J, Kou S Q, et al. Effects of high temperatures on dynamic rock fracture. Int J Rock Mech Min Sci, 2001, 38(2): 211 doi: 10.1016/S1365-1609(00)00071-X
|
[21] |
Talukdar M, Roy D G, Singh T. Correlating mode-I fracture toughness and mechanical properties of heat-treated crystalline rocks. J Rock Mech Geotech Eng, 2018, 10(1): 91 doi: 10.1016/j.jrmge.2017.09.009
|
[22] |
Yin T B, Li X B, Xia K W, et al. Effect of thermal treatment on the dynamic fracture toughness of laurentian granite. Rock Mech Rock Eng, 2012, 45(6): 1087 doi: 10.1007/s00603-012-0240-3
|
[23] |
Feng G, Kang Y, Meng T, et al. The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone. Rock Mech Rock Eng, 2017, 50(8): 2007 doi: 10.1007/s00603-017-1226-y
|
[24] |
Zuo J P, Wang J T, Sun Y J, et al. Effects of thermal treatment on fracture characteristics of granite from Beishan, a possible high-level radioactive waste disposal site in China. Eng Fract Mech, 2017, 182: 425 doi: 10.1016/j.engfracmech.2017.04.043
|
[25] |
Chen L, Mao X B, Yang S L, et al. Experimental investigation on dynamic fracture mechanism and energy evolution of saturated yellow sandstone under different freeze-thaw temperatures. Adv Civ Eng, 2019, 2019: 1
|
[26] |
Song Y J, Tan H, Yang H M, et al. Fracture evolution and failure characteristics of sandstone under freeze-thaw cycling by computed tomography. Eng Geol, 2021, 294: 106370 doi: 10.1016/j.enggeo.2021.106370
|
[27] |
Walder J, Hallet B. A theoretical model of the fracture of rock due to freezing. Geol Soc Am Bull, 1985, 96(3): 336 doi: 10.1130/0016-7606(1985)96<336:ATMOTF>2.0.CO;2
|
[28] |
Murton J B, Peterson R, Ozouf J C. Bedrock fracture by ice segregation in cold regions. Science, 2006, 314(5802): 1127 doi: 10.1126/science.1132127
|
[29] |
賈海梁, 項偉, 譚龍, 等. 砂巖凍融損傷機制的理論分析和試驗驗證. 巖石力學與工程學報, 2016, 35(5):879
Jia H L, Xiang W, Tan L, et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone. Chin J Rock Mech Eng, 2016, 35(5): 879
|
[30] |
Weng L, Wu Z J, Liu Q S. Dynamic mechanical properties of dry and water-saturated siltstones under sub-zero temperatures. Rock Mech Rock Eng, 2020, 53(10): 4381 doi: 10.1007/s00603-019-02039-5
|
[31] |
楊陽, 楊仁樹. 高應變率下紅砂巖“凍傷效應”. 工程科學學報, 2019, 41(10):1249
Yang Y, Yang R S. “Frostbite effect” of red sandstone under high strain rates. Chin J Eng, 2019, 41(10): 1249
|
[32] |
Zhou Y X, Xia K, Li X B, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci, 2012, 49: 105 doi: 10.1016/j.ijrmms.2011.10.004
|
[33] |
Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech, 2002, 42: 93 doi: 10.1007/BF02411056
|
[34] |
Chen R, Xia K, Dai F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech, 2009, 76(9): 1268 doi: 10.1016/j.engfracmech.2009.02.001
|
[35] |
趙毅鑫, 孫荘, 宋紅華, 等. 煤Ⅰ型動態斷裂裂紋擴展規律試驗與數值模擬研究. 煤炭學報, 2020, 45(12):3961 doi: 10.13225/j.cnki.jccs.2019.1347
Zhao Y X, Sun, Song H H, et al. Crack propagation law of mode Ⅰ dynamic fracture of coal: Experiment and numerical simulation. J China Coal Soc, 2020, 45(12): 3961 doi: 10.13225/j.cnki.jccs.2019.1347
|
[36] |
Zhao Y X, Gong S, Hao X J, et al. Effects of loading rate and bedding on the dynamic fracture toughness of coal: Laboratory experiments. Eng Fract Mech, 2017, 178: 375 doi: 10.1016/j.engfracmech.2017.03.011
|
[37] |
劉瑞峰, 朱哲明, 李盟, 等. 爆炸載荷下Ⅰ型裂紋的起裂及擴展規律研究. 巖石力學與工程學報, 2018, 37(2):392 doi: 10.13722/j.cnki.jrme.2017.1126
Liu R F, Zhu Z M, Li M, et al. Initiation and propagation of mode Ⅰ crack under blasting. Chin J Rock Mech Eng, 2018, 37(2): 392 doi: 10.13722/j.cnki.jrme.2017.1126
|
[38] |
Dai F, Xia K, Zheng H, et al. Determination of dynamic rock Mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech, 2011, 78(15): 2633 doi: 10.1016/j.engfracmech.2011.06.022
|
[39] |
殷志強, 謝廣祥, 胡祖祥, 等. 不同瓦斯壓力下煤巖三點彎曲斷裂特性研究. 煤炭學報, 2016, 41(2):424 doi: 10.13225/j.cnki.jccs.2015.0598
Yin Z Q, Xie G X, Hu Z X, et al. Investigation on fracture mechanism of coal rock on three-point bending tests under different gas pressures. J China Coal Soc, 2016, 41(2): 424 doi: 10.13225/j.cnki.jccs.2015.0598
|
[40] |
Zuo J P, Wang X S, Mao D Q. SEM in situ study on the effect of offset-notch on basalt cracking behavior under three-point bending load. Eng Fract Mech, 2014, 131: 504 doi: 10.1016/j.engfracmech.2014.09.006
|
[41] |
Zhang Q B, Zhao J. Quasi-static and dynamic fracture behaviour of rock materials: Phenomena and mechanisms. Int J Fract, 2014, 189(1): 1 doi: 10.1007/s10704-014-9959-z
|
[42] |
Zhang Z X, Kou S Q, Jiang L G, et al. Effects of loading rate on rock fracture: Fracture characteristics and energy partitioning. Int J Rock Mech Min Sci, 2000, 37(5): 745 doi: 10.1016/S1365-1609(00)00008-3
|
[43] |
Wang P, Xu J Y, Liu S H, et al. Dynamic mechanical properties and deterioration of red-sandstone subjected to repeated thermal shocks. Eng Geol, 2016, 212: 44 doi: 10.1016/j.enggeo.2016.07.015
|
[44] |
Scherer G W. Crystallization in pores. Cement Concrete Res, 1999, 29(8): 1347 doi: 10.1016/S0008-8846(99)00002-2
|
[45] |
Wang P, Xu J Y, Fang X Y, et al. Ultrasonic time-frequency method to evaluate the deterioration properties of rock suffered from freeze-thaw weathering. Cold Reg Sci Technol, 2017, 143: 13 doi: 10.1016/j.coldregions.2017.07.002
|
[46] |
Weng L, Wu Z J, Liu Q S, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures. Eng Fract Mech, 2019, 220: 106659 doi: 10.1016/j.engfracmech.2019.106659
|
[47] |
McGreevy J P, Whalley W B. Rock moisture content and frost weathering under natural and experimental conditions: A comparative discussion. Arct Alp Res, 1985, 17(3): 337 doi: 10.2307/1551022
|
[48] |
Ruedrich J, Siegesmund S. Fabric Dependence of Length Change Behaviour Induced by Ice Crystallisation in the Pore Space of Natural Building Stones. London: Taylor and Francis Group, 2006
|
[49] |
Ashworth E N, Abeles F B. Freezing behavior of water in small pores and the possible role in the freezing of plant tissues. Plant Physiol, 1984, 76(1): 201 doi: 10.1104/pp.76.1.201
|
[50] |
張景科, 劉盾, 馬雨君, 等. 弱膠結砂巖水巖作用機制——以慶陽北石窟為例. 東北大學學報(自然科學版), 2022, 43(7):1019 doi: 10.12068/j.issn.1005-3026.2022.07.015
Zhang J K, Liu D, Ma Y J, et al. Water-rock mechanism of weakly consolidated sandstone: A case study of Qingyang north grottoes. J Northeast Univ, 2022, 43(7): 1019 doi: 10.12068/j.issn.1005-3026.2022.07.015
|
[51] |
Zhou Z L, Cai X, Zhao Y, et al. Strength characteristics of dry and saturated rock at different strain rates. Trans Nonferrous Met Soc China, 2016, 26(7): 1919 doi: 10.1016/S1003-6326(16)64314-5
|