<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
ZHANG Junna, BAI Guoxing. Motion control of differential robot based on speed adjusting and path tracking[J]. Chinese Journal of Engineering, 2023, 45(9): 1550-1558. doi: 10.13374/j.issn2095-9389.2022.08.14.003
Citation: ZHANG Junna, BAI Guoxing. Motion control of differential robot based on speed adjusting and path tracking[J]. Chinese Journal of Engineering, 2023, 45(9): 1550-1558. doi: 10.13374/j.issn2095-9389.2022.08.14.003

Motion control of differential robot based on speed adjusting and path tracking

doi: 10.13374/j.issn2095-9389.2022.08.14.003
More Information
  • Corresponding author: E-mail: gxbai@ustb.edu.cn
  • Received Date: 2022-08-14
    Available Online: 2023-01-12
  • Publish Date: 2023-09-25
  • A differential robot is a typical mobile robot widely used in storage, agriculture, and other industries. The motion control of differential robots, including longitudinal and lateral control, is a current research hotspot. To date, researchers have not paid much attention to the interaction between longitudinal and lateral control of differential robots. However, the conflict between the ability to track the reference path and maintain the longitudinal speed at its maximum value is a critical issue that limits the operational efficiency of the differential robot. To solve this problem, a mapping relationship between the longitudinal speed and the turning curvature is analyzed. The mapping relationship is established when the maximum value of the longitudinal speed is known, i.e., the feasible upper limit of the longitudinal speed that can guarantee the steering ability of the differential robot is inversely proportional to the curvature of the trajectory. From this mapping relationship, a speed-adjusting method is proposed based on the preview information. This speed-adjusting method consists of two steps. First, the smaller value between the upper limit of the feasible longitudinal speed in a certain preview distance and the set value of the longitudinal speed are taken as the desired longitudinal speed. Second, a control law is established based on the deviation between this desired and current longitudinal speed. Additionally, a path-tracking method that cooperates with the above-mentioned speed-adjusting method is proposed. The theoretical basis of this path-tracking method is a nonlinear model predictive control. The prediction model used in this control method is derived from a kinematic model with longitudinal speed as a time-dependent parameter. Finally, a differential robot motion control system is formed based on speed adjusting and path tracking. The simulation and experimental results show that the proposed motion control system can actively adjust the longitudinal speed when the set value of the longitudinal speed of the differential robot is high and ensure high accuracy of path tracking control. Furthermore, the absolute value of the displacement and heading errors does not exceed 0.0499 m and 0.0726 rad, which are reduced by 97.57% and 45.04% compared with the motion control system without speed adjusting, respectively.

     

  • loading
  • [1]
    Jin Y C, Liu J Z, Xu Z J, et al. Development status and trend of agricultural robot technology. Int J Agric Biol Eng, 2021, 14(3): 1
    [2]
    易文泉, 趙超俊, 劉瑩. 移動機器人自主定位與導航技術研究. 中國工程機械學報, 2020, 18(5):400 doi: 10.15999/j.cnki.311926.2020.05.005

    Yi W Q, Zhao C J, Liu Y. Research on autonomous positioning and navigation technology of mobile robots. Chin J Constr Mach, 2020, 18(5): 400 doi: 10.15999/j.cnki.311926.2020.05.005
    [3]
    Zhu J S, Li W, Lin D, et al. Intelligent fire monitor for fire robot based on infrared image feedback control. Fire Technol, 2020, 56(5): 2089 doi: 10.1007/s10694-020-00964-4
    [4]
    李航, 王朝耀. 倉庫搬運機器人導航運動控制與NURBS軌跡規劃. 機械設計與制造, 2020(7):290 doi: 10.3969/j.issn.1001-3997.2020.07.066

    Li H, Wang C Y. Navigation motion control of warehouse handling robot and NURBS trajectory planning. Mach Des &Manuf, 2020(7): 290 doi: 10.3969/j.issn.1001-3997.2020.07.066
    [5]
    Stefek A, Van Pham T, Krivanek V, et al. Energy comparison of controllers used for a differential drive wheeled mobile robot. IEEE Access, 2020, 8: 170915 doi: 10.1109/ACCESS.2020.3023345
    [6]
    熊璐, 楊興, 卓桂榮, 等. 無人駕駛車輛的運動控制發展現狀綜述. 機械工程學報, 2020, 56(10):127 doi: 10.3901/JME.2020.10.127

    Xiong L, Yang X, Zhuo G R, et al. Review on motion control of autonomous vehicles. J Mech Eng, 2020, 56(10): 127 doi: 10.3901/JME.2020.10.127
    [7]
    白國星, 孟宇, 劉立, 等. 無人駕駛車輛路徑跟蹤控制研究現狀. 工程科學學報, 2021, 43(4):475

    Bai G X, Meng Y, Liu L, et al. Current status of path tracking control of unmanned driving vehicles. Chin J Eng, 2021, 43(4): 475
    [8]
    Hartono R, Nizar T N. Speed control of a mobile robot using fuzzy logic controller. IOP Conf Ser:Mater Sci Eng, 2019, 662(2): 022063 doi: 10.1088/1757-899X/662/2/022063
    [9]
    Ayten K K, ?iplak M H, Dumlu A. Implementation a fractional-order adaptive model-based PID-type sliding mode speed control for wheeled mobile robot. Proc Inst Mech Eng Part I J Syst Control Eng, 2019, 233(8): 1067
    [10]
    劉明, 榮學文, 李貽斌, 等. 基于地形聚類分析的移動機器人速度自適應控制. 吉林大學學報(工學版), 2021, 51(4):1496 doi: 10.13229/j.cnki.jdxbgxb20200334

    Liu M, Rong X W, Li Y B, et al. Speed adaptive control of mobile robot based on terrain clustering analysis. J Jilin Univ (Eng Technol Ed), 2021, 51(4): 1496 doi: 10.13229/j.cnki.jdxbgxb20200334
    [11]
    Orita Y, Fukao T. Robust human tracking of a crawler robot. J Robot Mechatron, 2019, 31(2): 194 doi: 10.20965/jrm.2019.p0194
    [12]
    李一春, 喬毅. 四輪機器人路徑跟蹤控制器設計與仿真. 電子測量技術, 2019, 42(13):11 doi: 10.19651/j.cnki.emt.1802550

    Li Y C, Qiao Y. Design and simulation of path tracking controller for four-wheel robot. Electron Meas Technol, 2019, 42(13): 11 doi: 10.19651/j.cnki.emt.1802550
    [13]
    Zhao Z Y, Liu H O, Chen H Y, et al. Kinematics-aware model predictive control for autonomous high-speed tracked vehicles under the off-road conditions. Mech Syst Signal Process, 2019, 123: 333 doi: 10.1016/j.ymssp.2019.01.005
    [14]
    Yang H J, Wang S Z, Zuo Z Q, et al. Trajectory tracking for a wheeled mobile robot with an omnidirectional wheel on uneven ground. IET Control Theory Appl, 2020, 14(7): 921 doi: 10.1049/iet-cta.2019.1074
    [15]
    白國星, 劉麗, 孟宇, 等. 基于非線性模型預測控制的移動機器人實時路徑跟蹤. 農業機械學報, 2020, 51(9):47 doi: 10.6041/j.issn.1000-1298.2020.09.006

    Bai G X, Liu L, Meng Y, et al. Real-time path tracking of mobile robot based on nonlinear model predictive control. Trans Chin Soc Agric Mach, 2020, 51(9): 47 doi: 10.6041/j.issn.1000-1298.2020.09.006
    [16]
    Ibraheem G A R, Azar A T, Ibraheem I K, et al. A novel design of a neural network-based fractional PID controller for mobile robots using hybridized fruit fly and particle swarm optimization. Complexity, 2020, 2020: 3067024
    [17]
    Khalaji A K, Jalalnezhad M. Robust forward\backward control of wheeled mobile robots. ISA Trans, 2021, 115: 32 doi: 10.1016/j.isatra.2021.01.016
    [18]
    Zhao L, Jin J, Gong J Q. Robust zeroing neural network for fixed-time kinematic control of wheeled mobile robot in noise-polluted environment. Math Comput Simul, 2021, 185: 289 doi: 10.1016/j.matcom.2020.12.030
    [19]
    Gao X S, Gao R, Liang P, et al. A hybrid tracking control strategy for nonholonomic wheeled mobile robot incorporating deep reinforcement learning approach. IEEE Access, 2021, 9: 15592 doi: 10.1109/ACCESS.2021.3053396
    [20]
    劉志杰, 王小樂, 任志剛, 等. 基于虛擬雷達模型的履帶拖拉機導航路徑跟蹤控制算法. 農業機械學報, 2021, 52(6):376 doi: 10.6041/j.issn.1000-1298.2021.06.040

    Liu Z J, Wang X L, Ren Z G, et al. Crawler tractor navigation path tracking control algorithm based on virtual radar model. Trans Chin Soc Agric Mach, 2021, 52(6): 376 doi: 10.6041/j.issn.1000-1298.2021.06.040
    [21]
    Gu Q, Bai G X, Meng Y, et al. Efficient path tracking control for autonomous driving of tracked emergency rescue robot under 6G network. Wirel Commun Mob Comput, 2021, 2021: 5593033
    [22]
    康翌婷, 張煜, 曾日芽. 地面不平條件下考慮滑動轉向特性的履帶車輛路徑跟蹤控制. 中南大學學報(自然科學版), 2022, 53(2):491

    Kang Y T, Zhang Y, Zeng R Y. Path tracking control of tracked vehicles considering skid-steer characteristics on uneven terrain. J Central South Univ (Sci Technol), 2022, 53(2): 491
    [23]
    Wu H M, Zaman M Q. LiDAR based trajectory-tracking of an autonomous differential drive mobile robot using fuzzy sliding mode controller. IEEE Access, 2022, 10: 33713 doi: 10.1109/ACCESS.2022.3162244
    [24]
    Sidek N, Sarkar N. Dynamic modeling and control of nonholonomic mobile robot with lateral slip // Third International Conference on Systems. Cancun, 2008: 66
    [25]
    Bai G X, Liu L, Meng Y, et al. Path tracking of wheeled mobile robots based on dynamic prediction model. IEEE Access, 2019, 7: 39690 doi: 10.1109/ACCESS.2019.2903934
    [26]
    Bai G X, Meng Y, Liu L, et al. Anti-sideslip path tracking of wheeled mobile robots based on fuzzy model predictive control. Electron Lett, 2020, 56(10): 490 doi: 10.1049/el.2019.4019
    [27]
    顧青, 白國星, 孟宇, 等. 基于非線性模型預測控制的自動泊車路徑跟蹤. 工程科學學報, 2019, 41(7):947

    Gu Q, Bai G X, Meng Y, et al. Path tracking of automatic parking based on nonlinear model predictive control. Chin J Eng, 2019, 41(7): 947
    [28]
    Bai G X, Meng Y, Liu L, et al. Review and comparison of path tracking based on model predictive control. Electronics, 2019, 8(10): 1077 doi: 10.3390/electronics8101077
    [29]
    白國星, 周蕾, 孟宇, 等. 基于時變局部模型的無人駕駛車輛路徑跟蹤. 工程科學學報, 2023, 45(5):787

    Bai G X, Zhou L, Meng Y, et al. Path tracking of unmanned vehicles based on the time-varying local model. Chin J Eng, 2023, 45(5): 787
    [30]
    Bai G X, Meng Y, Gu Q, et al. Some rules for setting the horizon parameters of NMPC-based vehicle path tracking // 2020 Chinese Automation Congress (CAC). Shanghai, 2021: 5167
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(18)

    Article views (313) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164