Citation: | FU Jia-qi, WANG Ting, MAO Hong-jun. Research progress on the influencing factors of polycyclic aromatic hydrocarbons and derivatives from vehicle exhaust and non-exhaust emissions[J]. Chinese Journal of Engineering, 2023, 45(5): 863-873. doi: 10.13374/j.issn2095-9389.2022.08.09.002 |
[1] |
Patel A B, Shaikh S, Jain K R, et al. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Front Microbiol, 2020, 11: 562813 doi: 10.3389/fmicb.2020.562813
|
[2] |
Bandowe B A M, Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment-A review. Sci Total Environ, 2017, 581-582: 237 doi: 10.1016/j.scitotenv.2016.12.115
|
[3] |
許允之, 章金, 袁麗梅, 等. 基于等離子體技術的污水處理. 實驗室研究與探索, 2021, 40(4):66 doi: 10.19927/j.cnki.syyt.2021.04.016
Xu Y Z, Zhang J, Yuan L M, et al. Sewage treatment based on plasma technology. Res Explor Lab, 2021, 40(4): 66 doi: 10.19927/j.cnki.syyt.2021.04.016
|
[4] |
Hooftman N, Messagie M, van Mierlo J, et al. A review of the European passenger car regulations-Real driving emissions vs local air quality. Renew Sustain Energy Rev, 2018, 86: 1 doi: 10.1016/j.rser.2018.01.012
|
[5] |
Zhao T, Yang L X, Huang Q, et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs (NPAHs) emitted by gasoline vehicles:Characterization and health risk assessment. Sci Total Environ, 2020, 727: 138631
|
[6] |
Zheng X, Zhang S J, Wu Y, et al. Measurement of particulate polycyclic aromatic hydrocarbon emissions from gasoline light-duty passenger vehicles. J Clean Prod, 2018, 185: 797 doi: 10.1016/j.jclepro.2018.03.078
|
[7] |
Lin Y C, Li Y C, Shangdiar S, et al. Assessment of PM2.5 and PAH content in PM2.5 emitted from mobile source gasoline-fueled vehicles in concomitant with the vehicle model and mileages. Chemosphere, 2019, 226: 502
|
[8] |
Alves C A, Barbosa C, Rocha S, et al. Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles. Environ Sci Pollut Res, 2015, 22(15): 11526 doi: 10.1007/s11356-015-4394-x
|
[9] |
Zerboni A, Rossi T, Bengalli R, et al. Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles. Environ Pollut, 2022, 297: 118767 doi: 10.1016/j.envpol.2021.118767
|
[10] |
Chen T, Zheng X, He X, et al. Comprehensive characterization of polycyclic aromatic hydrocarbon emissions from heavy-duty diesel vehicles utilizing GC × GC-ToF-MS. Sci Total Environ, 2022, 833: 155127 doi: 10.1016/j.scitotenv.2022.155127
|
[11] |
Cao X Y, Hao X W, Shen X B, et al. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements. Atmos Environ, 2017, 148: 190 doi: 10.1016/j.atmosenv.2016.10.040
|
[12] |
Agarwal A K, Mustafi N N. Real-world automotive emissions: Monitoring methodologies, and control measures. Renew Sustain Energy Rev, 2021, 137: 110624 doi: 10.1016/j.rser.2020.110624
|
[13] |
Kostenidou E, Martinez-Valiente A, R'Mili B, et al. Technical note: Emission factors, chemical composition, and morphology of particles emitted from Euro 5 diesel and gasoline light-duty vehicles during transient cycles. Atmos Chem Phys, 2021, 21(6): 4779 doi: 10.5194/acp-21-4779-2021
|
[14] |
Wang B, Lau Y S, Huang Y H, et al. Chemical and toxicological characterization of particulate emissions from diesel vehicles. J Hazard Mater, 2021, 405: 124613 doi: 10.1016/j.jhazmat.2020.124613
|
[15] |
An Y Z, Teng S P, Pei Y Q, et al. An experimental study of polycyclic aromatic hydrocarbons and soot emissions from a GDI engine fueled with commercial gasoline. Fuel, 2016, 164: 160 doi: 10.1016/j.fuel.2015.10.007
|
[16] |
Arias S, Molina F, Palacio R, et al. Assessment of carbonyl and PAH emissions in an automotive diesel engine fueled with butanol and renewable diesel fuel blends. Fuel, 2022, 316: 123290 doi: 10.1016/j.fuel.2022.123290
|
[17] |
Li X L, Zheng Y, Guan C, et al. Effect of biodiesel on PAH, OPAH, and NPAH emissions from a direct injection diesel engine. Environ Sci Pollut Res Int, 2018, 25(34): 34131 doi: 10.1007/s11356-018-3382-3
|
[18] |
Geldenhuys G, Wattrus M, Forbes P B C. Gas and particle phase polycyclic aromatic hydrocarbon emission factors from a diesel vehicle engine: Effect of operating modes in a developing country context. Atmos Environ X, 2022, 13: 100158
|
[19] |
Dhital N B, Wang S X, Lee C H, et al. Effects of driving behavior on real-world emissions of particulate matter, gaseous pollutants and particle-bound PAHs for diesel trucks. Environ Pollut, 2021, 286: 117292 doi: 10.1016/j.envpol.2021.117292
|
[20] |
Fernández-Rodríguez D, Lapuerta M, German L. Progress in the use of biobutanol blends in diesel engines. Energies, 2021, 14(11): 3215 doi: 10.3390/en14113215
|
[21] |
Perrone M G, Carbone C, Faedo D, et al. Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes. Atmos Environ, 2014, 82: 391 doi: 10.1016/j.atmosenv.2013.10.040
|
[22] |
Wang Y H, Zheng R, Qin Y H, et al. The impact of fuel compositions on the particulate emissions of direct injection gasoline engine. Fuel, 2016, 166: 543 doi: 10.1016/j.fuel.2015.11.019
|
[23] |
Huang L, Bohac S V, Chernyak S M, et al. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling. Atmos Environ, 2015, 102: 228 doi: 10.1016/j.atmosenv.2014.11.046
|
[24] |
McCaffery C, Durbin T D, Johnson K C, et al. The effect of ethanol and iso-butanol blends on polycyclic aromatic hydrocarbon (PAH) emissions from PFI and GDI vehicles. Atmos Pollut Res, 2020, 11(11): 2056 doi: 10.1016/j.apr.2020.08.024
|
[25] |
Yilmaz N, Davis S M. Polycyclic aromatic hydrocarbon (PAH) formation in a diesel engine fueled with diesel, biodiesel and biodiesel/n-butanol blends. Fuel, 2016, 181: 729 doi: 10.1016/j.fuel.2016.05.059
|
[26] |
Lim C, Lee J, Hong J, et al. Evaluation of regulated and unregulated emissions from a diesel powered vehicle fueled with diesel/biodiesel blends in Korea. Energy, 2014, 77: 533 doi: 10.1016/j.energy.2014.09.040
|
[27] |
Giechaskiel B, Joshi A, Ntziachristos L, et al. European regulatory framework and particulate matter emissions of gasoline light-duty vehicles: A review. Catalysts, 2019, 9(7): 586 doi: 10.3390/catal9070586
|
[28] |
Raza M, Chen L F, Leach F, et al. A review of particulate number (PN) emissions from gasoline direct injection (GDI) engines and their control techniques. Energies, 2018, 11(6): 1417 doi: 10.3390/en11061417
|
[29] |
Wang Z B, Liu P, Li H M, et al. The development of diesel particulate filter technology. IOP Conf Ser:Earth Environ Sci, 2021, 632(3): 032012 doi: 10.1088/1755-1315/632/3/032012
|
[30] |
Zhang Z Q, Ye J D, Tan D L, et al. The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel, 2021, 290: 120039 doi: 10.1016/j.fuel.2020.120039
|
[31] |
Jang J, Lee J, Choi Y, et al. Reduction of particle emissions from gasoline vehicles with direct fuel injection systems using a gasoline particulate filter. Sci Total Environ, 2018, 644: 1418 doi: 10.1016/j.scitotenv.2018.06.362
|
[32] |
Yang J C, Roth P, Durbin T D, et al. Gasoline particulate filters as an effective tool to reduce particulate and polycyclic aromatic hydrocarbon emissions from gasoline direct injection (GDI) vehicles: A case study with two GDI vehicles. Environ Sci Technol, 2018, 52(5): 3275 doi: 10.1021/acs.est.7b05641
|
[33] |
Mu?oz M, Haag R, Zeyer K, et al. Effects of four prototype gasoline particle filters (GPFs) on nanoparticle and genotoxic PAH emissions of a gasoline direct injection (GDI) vehicle. Environ Sci Technol, 2018, 52(18): 10709 doi: 10.1021/acs.est.8b03125
|
[34] |
Harrison R M, Allan J, Carruthers D, et al. Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review. Atmos Environ, 2021, 262: 118592 doi: 10.1016/j.atmosenv.2021.118592
|
[35] |
Piscitello A, Bianco C, Casasso A, et al. Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. Sci Total Environ, 2021, 766: 144440 doi: 10.1016/j.scitotenv.2020.144440
|
[36] |
Wei L, Choy Y S, Cheung C S. A study of brake contact pairs under different friction conditions with respect to characteristics of brake pad surfaces. Tribol Int, 2019, 138: 99 doi: 10.1016/j.triboint.2019.05.016
|
[37] |
Plachá D, Vaculík M, Mikeska M, et al. Release of volatile organic compounds by oxidative wear of automotive friction materials. Wear, 2017, 376-377: 705 doi: 10.1016/j.wear.2016.12.016
|
[38] |
Alves C, Evtyugina M, Vicente A, et al. Organic profiles of brake wear particles. Atmos Res, 2021, 255: 105557 doi: 10.1016/j.atmosres.2021.105557
|
[39] |
Alves C A, Vicente A M P, Calvo A I, et al. Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. Atmos Environ, 2020, 224: 117252 doi: 10.1016/j.atmosenv.2019.117252
|
[40] |
吳琳, 張新峰, 門正宇, 等. 機動車輪胎磨損顆粒物化學組分特征研究. 中國環境科學, 2020, 40(4):1486 doi: 10.3969/j.issn.1000-6923.2020.04.013
Wu L, Zhang X F, Men Z Y, et al. The chemical component characteristics of vehicle tire wear particles. China Environ Sci, 2020, 40(4): 1486 doi: 10.3969/j.issn.1000-6923.2020.04.013
|
[41] |
Sadiktsis I, Bergvall C, Johansson C, et al. Automobile tires-a potential source of highly carcinogenic dibenzopyrenes to the environment. Environ Sci Technol, 2012, 46(6): 3326 doi: 10.1021/es204257d
|
[42] |
Aatmeeyata, Sharma M. Polycyclic aromatic hydrocarbons, elemental and organic carbon emissions from tire-wear. Sci Total Environ, 2010, 408(20): 4563 doi: 10.1016/j.scitotenv.2010.06.011
|
[43] |
Kreider M L, Panko J M, McAtee B L, et al. Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Sci Total Environ, 2010, 408(3): 652 doi: 10.1016/j.scitotenv.2009.10.016
|
[44] |
Fussell J C, Franklin M, Green D C, et al. A review of road traffic-derived non-exhaust particles: Emissions, physicochemical characteristics, health risks, and mitigation measures. Environ Sci Technol, 2022, 56(11): 6813 doi: 10.1021/acs.est.2c01072
|
[45] |
Alves C A, Evtyugina M, Vicente A M P, et al. Chemical profiling of PM10 from urban road dust. Sci Total Environ, 2018, 634: 41 doi: 10.1016/j.scitotenv.2018.03.338
|
[46] |
Demir T, Karaka? D, Yenisoy-Karaka? S. Source identification of exhaust and non-exhaust traffic emissions through the elemental carbon fractions and Positive Matrix Factorization method. Environ Res, 2022, 204: 112399 doi: 10.1016/j.envres.2021.112399
|