Citation: | ZHOU Yi, MIAO Wenkang, CAI Yueling, DONG Yubing, OU Bin, LI Qianqian. Structural modification and performance optimization of red phosphorus nanomaterials as anodes for lithium/sodium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(9): 1493-1508. doi: 10.13374/j.issn2095-9389.2022.07.18.002 |
[1] |
Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective. J Am Chem Soc, 2013, 135(4): 1167 doi: 10.1021/ja3091438
|
[2] |
Wang X, Kim H M, Xiao Y, et al. Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A, 2016, 4(39): 14915 doi: 10.1039/C6TA06705K
|
[3] |
Zhu G N, Wang Y G, Xia Y Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci, 2012, 5(5): 6652 doi: 10.1039/c2ee03410g
|
[4] |
徐汝輝, 姚耀春, 梁風. 磷基負極材料在金屬離子電池中的現狀與趨勢. 化工進展, 2019, 38(9):4142 doi: 10.16085/j.issn.1000-6613.2018-2253
Xu R H, Yao Y C, Liang F. Status and development trend of phosphorus-based materials applied in metal ion battery anode. Chem Ind Eng Prog, 2019, 38(9): 4142 doi: 10.16085/j.issn.1000-6613.2018-2253
|
[5] |
Noorden R V. The rechargeable revolution: A better battery. Nature, 2014, 507(7490): 26 doi: 10.1038/507026a
|
[6] |
Chang W C, Tseng K W, Tuan H Y. Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes. Nano Lett, 2017, 17(2): 1240 doi: 10.1021/acs.nanolett.6b05081
|
[7] |
Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future. Energy Environ Sci, 2011, 4(9): 3287
|
[8] |
Zhao Y, Li X F, Yan B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater, 2016, 6(8): 1502175 doi: 10.1002/aenm.201502175
|
[9] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359 doi: 10.1038/35104644
|
[10] |
Li M, Lu J, Chen Z W, et al. 30 years of lithium-ion batteries. Adv Mater, 2018, 30(33): 1800561 doi: 10.1002/adma.201800561
|
[11] |
Sun J, Lee H W, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol, 2015, 10(11): 980 doi: 10.1038/nnano.2015.194
|
[12] |
Kim S W, Seo D H, Ma X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv Energy Mater, 2012, 2(7): 710 doi: 10.1002/aenm.201200026
|
[13] |
Wang L, He X M, Li J J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew Chem Int Ed Engl, 2012, 51(36): 9034 doi: 10.1002/anie.201204591
|
[14] |
Li W J, Han C, Gu Q F, et al. Three-dimensional electronic network assisted by TiN conductive Pillars and chemical adsorption to boost the electrochemical performance of red phosphorus. ACS Nano, 2020, 14(4): 4609 doi: 10.1021/acsnano.0c00216
|
[15] |
Li W H, Yang Z Z, Li M S, et al. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett, 2016, 16(3): 1546 doi: 10.1021/acs.nanolett.5b03903
|
[16] |
Li W J, Chou S L, Wang J Z, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett, 2013, 13(11): 5480 doi: 10.1021/nl403053v
|
[17] |
Zhang C, Wang X, Liang Q F, et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett, 2016, 16(3): 2054 doi: 10.1021/acs.nanolett.6b00057
|
[18] |
Ruan B Y, Wang J, Shi D Q, et al. A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries. J Mater Chem A, 2015, 3(37): 19011 doi: 10.1039/C5TA04366B
|
[19] |
Kim Y, Park Y, Choi A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater, 2013, 25(22): 3045 doi: 10.1002/adma.201204877
|
[20] |
Wu N, Yao H R, Yin Y X, et al. Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores. J Mater Chem A, 2015, 3(48): 24221 doi: 10.1039/C5TA08367B
|
[21] |
魯建豪, 薛杉杉, 連芳. 基于金屬有機框架材料設計合成鋰離子電池電極材料的研究進展. 工程科學學報, 2020, 42(5):527
Lu J H, Xue S S, Lian F. Research progress of MOFs-derived materials as the electrode for lithium–ion batteries—A short review. Chin J Eng, 2020, 42(5): 527
|
[22] |
Ni J F, Li L, Lu J. Phosphorus: An anode of choice for sodium-ion batteries. ACS Energy Lett, 2018, 3(5): 1137 doi: 10.1021/acsenergylett.8b00312
|
[23] |
Xia Q B, Li W J, Miao Z C, et al. Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res, 2017, 10(12): 4055 doi: 10.1007/s12274-017-1671-7
|
[24] |
Yang F H, Gao H, Chen J, et al. Phosphorus-based materials as the anode for sodium-ion batteries. Small Methods, 2017, 1(11): 1700216 doi: 10.1002/smtd.201700216
|
[25] |
張宇, 白金, 趙海雷. 紅磷的納米化及其在鈉離子電池中的應用. 工程科學學報, 2022, 44(4):590 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204012
Zhang Y, Bai J, Zhao H L. Preparation of nanosized red phosphorus and its application in sodium-ion batteries. Chin J Eng, 2022, 44(4): 590 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204012
|
[26] |
Pang J B, Bachmatiuk A, Yin Y, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv Energy Mater, 2018, 8(8): 1702093 doi: 10.1002/aenm.201702093
|
[27] |
Bachhuber F, von Appen J, Dronskowski R, et al. Van der Waals interactions in selected allotropes of phosphorus. Zeitschrift Für Kristallographie Cryst Mater, 2015, 230(2): 107
|
[28] |
Fung C M, Er C C, Tan L L, et al. Red phosphorus: An up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation. Chem Rev, 2022, 122(3): 3879 doi: 10.1021/acs.chemrev.1c00068
|
[29] |
Hart R R, Robin M B, Kuebler N A. 3p orbitals, bent bonds, and the electronic spectrum of the P4 molecule. J Chem Phys, 1965, 42(10): 3631 doi: 10.1063/1.1695771
|
[30] |
Sun L Q, Li M J, Sun K, et al. Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J Phys Chem C, 2012, 116(28): 14772 doi: 10.1021/jp302265n
|
[31] |
Carvalho A, Wang M, Zhu X, et al. Phosphorene: From theory to applications. Nat Rev Mater, 2016, 1(11): 1
|
[32] |
Ling X, Wang H, Huang S X, et al. The renaissance of black phosphorus. Proc Natl Acad Sci, 2015, 112(15): 4523 doi: 10.1073/pnas.1416581112
|
[33] |
Ruck M, Hoppe D, Wahl B, et al. Fibrous red phosphorus. Angew Chem Int Ed Engl, 2005, 44(46): 7616 doi: 10.1002/anie.200503017
|
[34] |
Roth W L, DeWitt T W, Smith A J. Polymorphism of red phosphorus. J Am Chem Soc, 1947, 69(11): 2881 doi: 10.1021/ja01203a072
|
[35] |
Winchester R A L, Whitby M, Shaffer M S P. Synthesis of pure phosphorus nanostructures. Angew Chem Int Ed Engl, 2009, 48(20): 3616 doi: 10.1002/anie.200805222
|
[36] |
Zhang S, Qian H J, Liu Z H, et al. Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies. Angew Chem Int Ed Engl, 2019, 58(6): 1659 doi: 10.1002/anie.201811152
|
[37] |
Bachhuber F, von Appen J, Dronskowski R, et al. The extended stability range of phosphorus allotropes. Angew Chem Int Ed Engl, 2014, 53(43): 11629 doi: 10.1002/anie.201404147
|
[38] |
Ding K N, Wen L L, Huang S P, et al. Electronic properties of red and black phosphorous and their potential application as photocatalysts. RSC Adv, 2016, 6(84): 80872 doi: 10.1039/C6RA10907A
|
[39] |
Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496 doi: 10.1038/35035045
|
[40] |
Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4(5): 366 doi: 10.1038/nmat1368
|
[41] |
Wang N, Gao Y, Wang Y X, et al. Nanoengineering to achieve high sodium storage: A case study of carbon coated hierarchical nanoporous TiO2 microfibers. Adv Sci (Weinh), 2016, 3(8): 1600013 doi: 10.1002/advs.201600013
|
[42] |
Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol, 2012, 7(5): 310 doi: 10.1038/nnano.2012.35
|
[43] |
Deshpande R, Cheng Y T, Verbrugge M W. Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources, 2010, 195(15): 5081 doi: 10.1016/j.jpowsour.2010.02.021
|
[44] |
Zhao Y, Stein P, Bai Y, et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J Power Sources, 2019, 413: 259 doi: 10.1016/j.jpowsour.2018.12.011
|
[45] |
Oro S, Urita K, Moriguchi I. Nanospace-controlled SnO2/nanoporous carbon composite as a high-performance anode for sodium ion batteries. Chem Lett, 2017, 46(4): 502 doi: 10.1246/cl.161185
|
[46] |
Li W H, Hu S H, Luo X Y, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater, 2017, 29(16): 1605820 doi: 10.1002/adma.201605820
|
[47] |
Zhu J L, Liu Z G, Wang W, et al. Green, template-less synthesis of honeycomb-like porous micron-sized red phosphorus for high-performance lithium storage. ACS Nano, 2021, 15(1): 1880 doi: 10.1021/acsnano.1c00048
|
[48] |
Liu S, Feng J K, Bian X F, et al. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ Sci, 2016, 9(4): 1229 doi: 10.1039/C5EE03699B
|
[49] |
Yao Y, Mcdowell M T, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett, 2011, 11(7): 2949 doi: 10.1021/nl201470j
|
[50] |
Raju V, Rains J, Gates C, et al. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett, 2014, 14(7): 4119 doi: 10.1021/nl501692p
|
[51] |
Guo Y P, Wei Y Q, Li H Q, et al. Layer structured materials for advanced energy storage and conversion. Small, 2017, 13(45): 1701649 doi: 10.1002/smll.201701649
|
[52] |
Zhang Y Y, Rui X H, Tang Y X, et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv Energy Mater, 2016, 6(10): 1502409 doi: 10.1002/aenm.201502409
|
[53] |
Wang F, Zi W W, Zhao B X, et al. Facile solution synthesis of red phosphorus nanoparticles for lithium ion battery anodes. Nanoscale Res Lett, 2018, 13(1): 356 doi: 10.1186/s11671-018-2770-4
|
[54] |
Jiang Z Z, Sen A. Iodine-doped poly(ethylenepyrrolediyl) derivatives: A new class of nonconjugated conducting polymers. Macromolecules, 1992, 25(2): 880 doi: 10.1021/ma00028a057
|
[55] |
Lai X Y, Halpert J E, Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ Sci, 2012, 5(2): 5604 doi: 10.1039/C1EE02426D
|
[56] |
Lou X ?, Wang Y, Yuan C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater, 2006, 18(17): 2325 doi: 10.1002/adma.200600733
|
[57] |
Zhu L Q, Zhu Z X, Zhou J B, et al. Kirkendall effect modulated hollow red phosphorus nanospheres for high performance sodium-ion battery anodes. Chem Commun (Camb), 2020, 56(79): 11795 doi: 10.1039/D0CC05087C
|
[58] |
Zhou J B, Liu X Y, Cai W L, et al. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv Mater, 2017, 29(29): 1700214 doi: 10.1002/adma.201700214
|
[59] |
Liu S, Xu H, Bian X F, et al. Hollow nanoporous red phosphorus as an advanced anode for sodium-ion batteries. J Mater Chem A, 2018, 6(27): 12992 doi: 10.1039/C8TA03301C
|
[60] |
Santhoshkumar P, Shaji N, Nanthagopal M, et al. Multichannel red phosphorus with a nanoporous architecture: A novel anode material for sodium-ion batteries. J Power Sources, 2020, 470: 228459 doi: 10.1016/j.jpowsour.2020.228459
|
[61] |
Wang C H, Kaneti Y V, Bando Y, et al. Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater Horiz, 2018, 5(3): 394 doi: 10.1039/C8MH00133B
|
[62] |
Li S J, Pasc A, Fierro V, et al. Hollow carbon spheres, synthesis and applications—A review. J Mater Chem A, 2016, 4(33): 12686 doi: 10.1039/C6TA03802F
|
[63] |
Luo J M, Sun Y G, Guo S J, et al. Hollow carbon nanospheres: Syntheses and applications for post lithium-ion batteries. Mater Chem Front, 2020, 4(8): 2283 doi: 10.1039/D0QM00313A
|
[64] |
Li Z, Wu H B, Lou X W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ Sci, 2016, 9(10): 3061 doi: 10.1039/C6EE02364A
|
[65] |
Liu T, Zhang L Y, Cheng B, et al. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv Energy Mater, 2019, 9(17): 1803900 doi: 10.1002/aenm.201803900
|
[66] |
Jiang J M, Nie G D, Nie P, et al. Nanohollow carbon for rechargeable batteries: Ongoing progresses and challenges. Nanomicro Lett, 2020, 12(1): 183
|
[67] |
Liu B Q, Zhang Q, Li L, et al. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries. ACS Nano, 2019, 13(11): 13513 doi: 10.1021/acsnano.9b07428
|
[68] |
Yao S S, Cui J, Huang J Q, et al. Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries. Adv Energy Mater, 2018, 8(7): 1702267 doi: 10.1002/aenm.201702267
|
[69] |
Jin H L, Lu H, Wu W Y, et al. Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy, 2020, 70: 104569 doi: 10.1016/j.nanoen.2020.104569
|
[70] |
Yu L, Hu H, Wu H B, et al. Complex hollow nanostructures: Synthesis and energy-related applications. Adv Mater, 2017, 29(15): 1604563 doi: 10.1002/adma.201604563
|
[71] |
Jin T, Han Q Q, Wang Y J, et al. 1D nanomaterials: Design, synthesis, and applications in sodium-ion batteries. Small, 2018, 14(2): 1703086 doi: 10.1002/smll.201703086
|
[72] |
Li W H, Yang Z Z, Jiang Y, et al. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon, 2014, 78: 455 doi: 10.1016/j.carbon.2014.07.026
|
[73] |
Sun X Z, Li W H, Zhong X W, et al. Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers. Energy Storage Mater, 2017, 9: 112 doi: 10.1016/j.ensm.2017.07.003
|
[74] |
Liu D, Huang X K, Qu D Y, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy, 2018, 52: 1 doi: 10.1016/j.nanoen.2018.07.023
|
[75] |
Zhang L, Yu H Y, Wang Y L. Scalable method for preparing multi-walled carbon nanotube supported red phosphorus nanoparticles as anode material in lithium-ion batteries. Mater Lett, 2022, 312: 131638 doi: 10.1016/j.matlet.2021.131638
|
[76] |
Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 doi: 10.1126/science.1157996
|
[77] |
Liu S, Xu H, Bian X F, et al. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS Nano, 2018, 12(7): 7380 doi: 10.1021/acsnano.8b04075
|
[78] |
Wang L Y, Guo H L, Wang W, et al. Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 211: 499 doi: 10.1016/j.electacta.2016.06.052
|
[79] |
Liu Y H, Zhang A Y, Shen C F, et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 2017, 11(6): 5530 doi: 10.1021/acsnano.7b00557
|
[80] |
Zhang S L, Li X Y, Yang W T, et al. Novel synthesis of red phosphorus nanodot/Ti3C2Tx MXenes from low-cost Ti3SiC2 MAX phases for superior lithium- and sodium-ion batteries. ACS Appl Mater Interfaces, 2019, 11(45): 42086 doi: 10.1021/acsami.9b13308
|
[81] |
Zhang S X, Liu H, Cao B, et al. An MXene/CNTs@P nanohybrid with stable Ti-O-P bonds for enhanced lithium ion storage. J Mater Chem A, 2019, 7(38): 21766 doi: 10.1039/C9TA07357D
|
[82] |
Liu W L, Ju S L, Yu X B. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS Nano, 2020, 14(1): 974 doi: 10.1021/acsnano.9b08282
|
[83] |
Liu W L, Du L Y, Ju S L, et al. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries. ACS Nano, 2021, 15(3): 5679 doi: 10.1021/acsnano.1c00924
|
[84] |
Li Y, Jiang S, Qian Y, et al. Amine-induced phase transition from white phosphorus to red/black phosphorus for Li/K-ion storage. Chem Commun (Camb), 2019, 55(47): 6751 doi: 10.1039/C9CC02971K
|
[85] |
Yuan T, Ruan J F, Peng C X, et al. 3D red phosphorus/sheared CNT sponge for high performance lithium-ion battery anodes. Energy Storage Mater, 2018, 13: 267 doi: 10.1016/j.ensm.2018.01.014
|
[86] |
Gao H, Zhou T F, Zheng Y, et al. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries. Adv Energy Mater, 2016, 6(21): 1601037 doi: 10.1002/aenm.201601037
|
[87] |
Sun J, Lee H W, Pasta M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater, 2016, 4: 130 doi: 10.1016/j.ensm.2016.04.003
|
[88] |
Wang J X, Huang Z P, Duan H L, et al. Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sin, 2011, 24(1): 52 doi: 10.1016/S0894-9166(11)60009-8
|
[89] |
Christensen J, Newman J. Stress generation and fracture in lithium insertion materials. J Solid State Electrochem, 2006, 10(5): 293 doi: 10.1007/s10008-006-0095-1
|
[90] |
Lu Y Y, Ni Y. Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes. Mech Mater, 2015, 91: 372 doi: 10.1016/j.mechmat.2015.03.010
|
[91] |
Liu Y H, Liu Q Z, Jian C, et al. Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus. Nat Commun, 2020, 11(1): 2520 doi: 10.1038/s41467-020-16077-z
|
[92] |
Bhandakkar T K, Johnson H T. Diffusion induced stresses in buckling battery electrodes. J Mech Phys Solids, 2012, 60(6): 1103 doi: 10.1016/j.jmps.2012.02.012
|
[93] |
Baggetto L, Danilov D, Notten P H L. Honeycomb-structured silicon: Remarkable morphological changes induced by electrochemical (de)lithiation. Adv Mater, 2011, 23(13): 1563 doi: 10.1002/adma.201003665
|
[94] |
Qian J F, Wu X Y, Cao Y L, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed Engl, 2013, 52(17): 4633 doi: 10.1002/anie.201209689
|
[95] |
Feng W C, Wang H, Jiang Y L, et al. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv Energy Mater, 2022, 12(7): 2103343 doi: 10.1002/aenm.202103343
|
[96] |
Capone I, Aspinall J, Darnbrough E, et al. Electrochemo-mechanical properties of red phosphorus anodes in lithium, sodium, and potassium ion batteries. Matter, 2020, 3(6): 2012 doi: 10.1016/j.matt.2020.09.017
|