Citation: | CAI Zhixin, DANG Zhang, Lü Yong, YUAN Rui, AN Bingnan. Adaptive dynamic mode decomposition and GA-SVM with application to fault classification of planetary bearing[J]. Chinese Journal of Engineering, 2023, 45(9): 1559-1568. doi: 10.13374/j.issn2095-9389.2022.07.01.001 |
[1] |
Lei Y G. Adaptive ensemble empirical mode decomposition and its application to fault detection of planetary gearboxes. J Mech Eng, 2014, 50(3): 64 doi: 10.3901/JME.2014.03.064
|
[2] |
Wang T Y, Chu F L, Feng Z P. Meshing frequency modulation (MFM) index-based kurtogram for planet bearing fault detection. J Sound Vib, 2018, 432: 437 doi: 10.1016/j.jsv.2018.06.051
|
[3] |
王普, 李天垚, 高學金, 等. 分層自適應小波閾值軸承故障信號降噪方法. 振動工程學報, 2019, 32(3):548 doi: 10.16385/j.cnki.issn.1004-4523.2019.03.021
Wang P, Li T Y, Gao X J, et al. Bearing fault signal denoising method of hierarchical adaptive wavelet threshold function. J Vib Eng, 2019, 32(3): 548 doi: 10.16385/j.cnki.issn.1004-4523.2019.03.021
|
[4] |
Zhao X M, Patel T H, Zuo M J. Multivariate EMD and full spectrum based condition monitoring for rotating machinery. Mech Syst Signal Process, 2012, 27: 712 doi: 10.1016/j.ymssp.2011.08.001
|
[5] |
王振亞, 姚立綱, 戚曉利, 等. 參數優化變分模態分解與多域流形學習的行星齒輪箱故障診斷. 振動與沖擊, 2021, 40(1):110 doi: 10.13465/j.cnki.jvs.2021.01.015
Wang Z Y, Yao L G, Qi X L, et al. Fault diagnosis of planetary gearbox based on parameter optimized VMD and multi-domain manifold learning. J Vib Shock, 2021, 40(1): 110 doi: 10.13465/j.cnki.jvs.2021.01.015
|
[6] |
Zheng X W, Tang Y Y, Zhou J T. A framework of adaptive multiscale wavelet decomposition for signals on undirected graphs. IEEE Trans Signal Process, 2019, 67(7): 1696 doi: 10.1109/TSP.2019.2896246
|
[7] |
Lv Y, Yuan R, Wang T, et al. Health degradation monitoring and early fault diagnosis of a rolling bearing based on CEEMDAN and improved MMSE. Materials, 2018, 11(6): 1009 doi: 10.3390/ma11061009
|
[8] |
鄭義, 岳建海, 焦靜, 等. 基于參數優化變分模態分解的滾動軸承故障特征提取方法. 振動與沖擊, 2021, 40(1):86 doi: 10.13465/j.cnki.jvs.2021.01.012
Zheng Y, Yue J H, Jiao J, et al. Fault feature extraction method of rolling bearing based on parameter optimized VMD. J Vib Shock, 2021, 40(1): 86 doi: 10.13465/j.cnki.jvs.2021.01.012
|
[9] |
Dang Z, Lv Y, Li Y R, et al. A fault diagnosis method for one-dimensional vibration signal based on multiresolution tlsDMD and approximate entropy. Shock Vib, 2019, 2019: 1
|
[10] |
Rowley C W, Mezi? I, Bagheri S, et al. Spectral analysis of nonlinear flows. J Fluid Mech, 2009, 641: 115 doi: 10.1017/S0022112009992059
|
[11] |
Taira K, Brunton S L, Dawson S T M, et al. Modal analysis of fluid flows: An overview. AIAA J, 2017, 55(12): 4013 doi: 10.2514/1.J056060
|
[12] |
Schmid P J, Li L, Juniper M P, et al. Applications of the dynamic mode decomposition. Theor Comput Fluid Dyn, 2011, 25(1): 249
|
[13] |
Dou D, Ye X D, Zhang G H. Entropy sequences and maximal entropy sets. Nonlinearity, 2006, 19(1): 53 doi: 10.1088/0951-7715/19/1/004
|
[14] |
Pincus S M. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci, 1991, 88(6): 2297 doi: 10.1073/pnas.88.6.2297
|
[15] |
施瑩, 林建輝, 莊哲, 等. 基于振動信號時頻分解-樣本熵的受電弓裂紋故障診斷. 振動與沖擊, 2019, 38(8):180 doi: 10.13465/j.cnki.jvs.2019.08.027
Shi Y, Lin J H, Zhuang Z, et al. Fault diagnosis for pantograph cracks based on time-frequency decomposition and sample entropy of vibration signals. J Vib Shock, 2019, 38(8): 180 doi: 10.13465/j.cnki.jvs.2019.08.027
|
[16] |
Dang Z, Lv Y, Li Y R, et al. Optimized dynamic mode decomposition via non-convex regularization and multiscale permutation entropy. Entropy, 2018, 20(3): 152 doi: 10.3390/e20030152
|
[17] |
林麗, 趙德有. 近似熵在聲發射信號處理中的應用. 振動與沖擊, 2008, 27(2):99 doi: 10.3969/j.issn.1000-3835.2008.02.023
Lin L, Zhao D Y. Application of approximate entropy in acoustic emission signal processing. J Vib Shock, 2008, 27(2): 99 doi: 10.3969/j.issn.1000-3835.2008.02.023
|
[18] |
Jiang Y, Mao D, Xu Y S. A fast algorithm for computing sample entropy. Adv Adapt Data Anal, 2011, 3(1?2): 167 doi: 10.1142/S1793536911000775
|
[19] |
Azami H, Escudero J. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Comput Methods Programs Biomed, 2016, 128: 40 doi: 10.1016/j.cmpb.2016.02.008
|
[20] |
Rostaghi M, Azami H. Dispersion entropy: A measure for time-series analysis. IEEE Signal Process Lett, 2016, 23(5): 610 doi: 10.1109/LSP.2016.2542881
|
[21] |
Azami H, Rostaghi M, Abásolo D, et al. Refined composite multiscale dispersion entropy and its application to biomedical signals. IEEE Trans Biomed Eng, 2017, 64(12): 2872 doi: 10.1109/TBME.2017.2679136
|
[22] |
Achlerkar P D, Samantaray S R, Sabarimalai Manikandan M. Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid-connected distributed generation system. IEEE Trans Smart Grid, 2018, 9(4): 3122 doi: 10.1109/TSG.2016.2626469
|
[23] |
張淑清, 黃文靜, 胡永濤, 等. 基于總體平均經驗模式分解近似熵和混合PSO-BP算法的軸承故障診斷方法. 中國機械工程, 2016, 27(22):3048 doi: 10.3969/j.issn.1004-132X.2016.22.012
Zhang S Q, Huang W J, Hu Y T, et al. Bearing fault diagnosis method based on EEMD approximate entropy and hybrid PSO–BP algorithm. China Mech Eng, 2016, 27(22): 3048 doi: 10.3969/j.issn.1004-132X.2016.22.012
|
[24] |
Abdoos A A, Mianaei P K, Ghadikolaei M R. Combined VMD-SVM based feature selection method for classification of power quality events. Appl Soft Comput, 2016, 38(C): 637
|
[25] |
Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: Theory and application. Adv Eng Softw, 2017, 105: 30 doi: 10.1016/j.advengsoft.2017.01.004
|
[26] |
Meraihi Y, Benmessaoud Gabis A, Mirjalili S, et al. Grasshopper optimization algorithm: Theory, variants, and applications. IEEE Access, 2021, 9: 50001 doi: 10.1109/ACCESS.2021.3067597
|
[27] |
Zhao R, Ni H, Feng H W, et al. A dynamic weight grasshopper optimization algorithm with random jumping // Advances in Intelligent Systems and Computing. Singapore: Springer Singapore, 2019: 401
|
[28] |
Yu J B, Hu T Z, Liu H Q. A new morphological filter for fault feature extraction of vibration signals. IEEE Access, 2019, 7: 53743 doi: 10.1109/ACCESS.2019.2912898
|
[29] |
Ma Y B, Lv Y, Yuan R, et al. Matching synchroextracting transform for mechanical fault diagnosis under variable-speed conditions. IEEE Trans Instrum Meas, 2022, 71: 1
|
[30] |
Wang D. Some further thoughts about spectral kurtosis, spectral L2/L1 norm, spectral smoothness index and spectral Gini index for characterizing repetitive transients. Mech Syst Signal Process, 2018, 108: 360 doi: 10.1016/j.ymssp.2018.02.034
|
[31] |
Ren Y, Li W, Zhang B, et al. Fault diagnosis of rolling bearings based on improved kurtogram in varying speed conditions. Appl Sci, 2019, 9(6): 1157 doi: 10.3390/app9061157
|
[32] |
Zhang S, Zhang Y X, Zhu J P. Rolling element-bearing feature extraction based on combined wavelets and quantum-behaved particle swarm optimization. J Mech Sci Technol, 2015, 29(2): 605 doi: 10.1007/s12206-015-0120-3
|
[33] |
唐曉波, 王中勤, 鐘林霞. 基于維基語義擴展的微博話題追蹤模型研究. 情報科學, 2017, 35(2):80 doi: 10.13833/j.cnki.is.2017.02.014
Tang X B, Wang Z Q, Zhong L X. Microblog topic tracking model based on wikipedia semantic extension. Inf Sci, 2017, 35(2): 80 doi: 10.13833/j.cnki.is.2017.02.014
|
[34] |
張殷, 武利會, 范心明, 等. 基于改進S變換和GA-SVM的電能質量擾動識別與分類. 廣東電力, 2021, 34(5):99
Zhang Y, Wu L H, Fan X M, et al. Identification and classification of power quality disturbances based on modified S transform and GA-SVM. Guangdong Electr Power, 2021, 34(5): 99
|
[35] |
徐淵, 宋文祥, 馮九一, 等. 三電平逆變器電流諧波最小PWM方法. 上海大學學報(自然科學版), 2017, 23(5):690
Xu Y, Song W X, Feng J Y, et al. Minimum pulse width modulation of current harmonic for three-level inverter. J Shanghai Univ Nat Sci Ed, 2017, 23(5): 690
|