Citation: | GUO Ju-quan, CAO Sheng. Advances in the performance improvement strategies of tungsten oxide-based electrochromic smart windows[J]. Chinese Journal of Engineering, 2023, 45(5): 840-852. doi: 10.13374/j.issn2095-9389.2022.06.28.002 |
[1] |
中國建筑節能協會. 中國建筑能耗研究報告2020. 建筑節能, 2021, 49(2):1
China Building Energy Efficiency Association. China building energy consumption annual report 2020. Build Energy Effic, 2021, 49(2): 1
|
[2] |
王云鵬, 那威, 田亞鵬, 等. 包含制冷、空調和采暖的我國住宅建筑能耗強度特征. 制冷, 2021, 40(4):57 doi: 10.3969/J.ISSN.1005-9180.2021.04.011
Wang Y P, Na W, Tian Y P, et al. Characteristics of energy intensity of residential buildings including refrigeration, air conditioning and heating in China. Refrigeration, 2021, 40(4): 57 doi: 10.3969/J.ISSN.1005-9180.2021.04.011
|
[3] |
Dun M, Wu L F. Forecasting the building energy consumption in China using grey model. Environ Process, 2020, 7(3): 1009 doi: 10.1007/s40710-020-00438-3
|
[4] |
Evangelisti L, Guattari C, Asdrubali F, et al. An experimental investigation of the thermal performance of a building solar shading device. J Build Eng, 2020, 28: 101089 doi: 10.1016/j.jobe.2019.101089
|
[5] |
Deb S K. A novel electrophotographic system. Appl Opt, 1969, 8(101): 192
|
[6] |
Buckner H B, Perry N H. In situ optical absorption studies of point defect kinetics and thermodynamics in oxide thin films. Adv Mater Interfaces, 2019, 6(15): 1900496 doi: 10.1002/admi.201900496
|
[7] |
Shimizu I, Shizukuishi M, Inoue E. Solid-state electrochromic device consisting of amorphous WO3 and Cr2O3. J Appl Phys, 1979, 50(6): 4027 doi: 10.1063/1.326483
|
[8] |
Lampert C M. Electrochromic materials and devices for energy efficient windows. Sol Energy Mater, 1984, 11(1-2): 1 doi: 10.1016/0165-1633(84)90024-8
|
[9] |
Deb S K. Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos Mag A J Theor Exp Appl Phys, 1973, 27(4): 801
|
[10] |
Faughnan B W, Crandall R S, Heyman P M. Electrochromism in WO3 amorphous films. RCA Rev, 1975, 36(1): 177
|
[11] |
Svensson J, Granqvist C G. Electrochromic coatings for smart windows // Proceedings Volume 0502, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion III. San Diego, 1984: 30
|
[12] |
Liu Y B, Wang J X, Xiao X D, et al. Synthesis of high-performance electrochromic thin films by a low-cost method. Ceram Int, 2021, 47(6): 7837 doi: 10.1016/j.ceramint.2020.11.130
|
[13] |
Wang Z, Gong W B, Wang X Y, et al. Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition. ACS Appl Mater Interfaces, 2020, 12(30): 33917 doi: 10.1021/acsami.0c08270
|
[14] |
Kim K W, Yun T Y, You S H, et al. Extremely fast electrochromic supercapacitors based on mesoporous WO3 prepared by an evaporation-induced self-assembly. NPG Asia Mater, 2020, 12: 84 doi: 10.1038/s41427-020-00257-w
|
[15] |
孫天皓, 劉紅均, 伏桂月, 等. WO3薄膜電致變色器件的響應時間測試及其改善方案. 液晶與顯示, 2021, 36(5):641 doi: 10.37188/CJLCD.2020-0293
Sun T H, Liu H J, Fu G Y, et al. Measuring and improving response time of WO3 thin film electrochromic devices. Chin J Liq Cryst Disp, 2021, 36(5): 641 doi: 10.37188/CJLCD.2020-0293
|
[16] |
Yu H, Guo J J, Wang C, et al. High performance in electrochromic amorphous WOx film with long-term stability and tunable switching times via Al/Li-ions intercalation/deintercalation. Electrochimica Acta, 2019, 318: 644 doi: 10.1016/j.electacta.2019.06.129
|
[17] |
Wang S, Xu H B, Hao T T, et al. In situ XRD and operando spectra-electrochemical investigation of tetragonal WO3-x nanowire networks for electrochromic supercapacitors. NPG Asia Mater, 2021, 13: 51 doi: 10.1038/s41427-021-00319-7
|
[18] |
Jo M H, Kim K H, Ahn H J. P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices. Chem Eng J, 2022, 445: 136826 doi: 10.1016/j.cej.2022.136826
|
[19] |
Zhang S L, Cao S, Zhang T R, et al. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance. Mater Horiz, 2018, 5(2): 291 doi: 10.1039/C7MH01128H
|
[20] |
Park S, Park H S, Dao T T, et al. Solvothermal synthesis of oxygen deficient tungsten oxide nano-particle for dual band electrochromic devices. Sol Energy Mater Sol Cells, 2022, 242: 111759 doi: 10.1016/j.solmat.2022.111759
|
[21] |
Zhang S L, Cao S, Zhang T R, et al. Overcoming the technical challenges in Al anode-based electrochromic energy storage windows. Small Methods, 2020, 4(1): 1900545 doi: 10.1002/smtd.201900545
|
[22] |
Nguyen T H Q, Eberheim F, G?bel S, et al. Enhancing the spectroelectrochemical performance of WO3 films by use of structure-directing agents during film growth. Appl Sci, 2022, 12(5): 2327 doi: 10.3390/app12052327
|
[23] |
鐘曉嵐, 劉雪晴, 刁訓剛. 基于氧化鎢和氧化鎳的電致變色器件研究進展. 無機材料學報, 2021, 36(2):128 doi: 10.15541/jim20200488
Zhong X L, Liu X Q, Diao X G. Electrochromic devices based on tungsten oxide and nickel oxide: A review. J Inorg Mater, 2021, 36(2): 128 doi: 10.15541/jim20200488
|
[24] |
Yu H, Guo J J, Wang C, et al. Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing. Electrochimica Acta, 2020, 332: 135504 doi: 10.1016/j.electacta.2019.135504
|
[25] |
Li Z X, Liu Z F, Li J W, et al. The electrochromic properties of the film enhanced by introducing oxygen vacancies to crystalline tungsten oxide. Colloids Surf A Physicochem Eng Aspects, 2022, 641: 128615 doi: 10.1016/j.colsurfa.2022.128615
|
[26] |
Hasani A, Le Q V, Nguyen T P, et al. A thorough study on electrochromic properties of metal doped tungsten trioxide film prepared by a facile solution process. Electrochimica Acta, 2018, 283: 1195 doi: 10.1016/j.electacta.2018.07.050
|
[27] |
Zhou J L, Wei Y X, Luo G, et al. Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices. J Mater Chem C, 2016, 4(8): 1613 doi: 10.1039/C5TC03750F
|
[28] |
Xie S J, Bi Z J, Chen Y B, et al. Electrodeposited Mo-doped WO3 film with large optical modulation and high areal capacitance toward electrochromic energy-storage applications. Appl Surf Sci, 2018, 459: 774 doi: 10.1016/j.apsusc.2018.08.045
|
[29] |
Pooyodying P, Ok J W, Son Y H, et al. Electrical and optical properties of electrochromic device with WO3: Mo film prepared by RF magnetron Co-sputtering. Opt Mater, 2021, 112: 110766 doi: 10.1016/j.optmat.2020.110766
|
[30] |
Li W L, Zhang J, Zheng Y H, et al. High performance electrochromic energy storage devices based on Mo-doped crystalline/amorphous WO3 core-shell structures. Sol Energy Mater Sol Cells, 2022, 235: 111488 doi: 10.1016/j.solmat.2021.111488
|
[31] |
Zhan Y, Tan M R J, Cheng X, et al. Ti-doped WO3 synthesized by a facile wet bath method for improved electrochromism. J Mater Chem C, 2017, 5(38): 9995 doi: 10.1039/C7TC02456H
|
[32] |
Song Y, Zhang Z Y, Yan L M, et al. Electrodeposition of Ti-doped hierarchically mesoporous silica microspheres/tungsten oxide nanocrystallines hybrid films and their electrochromic performance. Nanomaterials, 2019, 9(12): 1795 doi: 10.3390/nano9121795
|
[33] |
Park H S, Park S, Song S H, et al. Effects of Ti-doping amount and annealing temperature on electrochromic performance of sol-gel derived WO3. RSC Adv, 2022, 12(27): 17401 doi: 10.1039/D2RA02247H
|
[34] |
Park S, Thuy D T, Sarwar S, et al. Synergistic effects of Ti-doping induced porous networks on electrochromic performance of WO3 films. J Mater Chem C, 2020, 8(48): 17245 doi: 10.1039/D0TC04420B
|
[35] |
Wang W Q, Yao Z J, Wang X L, et al. Niobium doped tungsten oxide mesoporous film with enhanced electrochromic and electrochemical energy storage properties. J Colloid Interface Sci, 2019, 535: 300 doi: 10.1016/j.jcis.2018.10.006
|
[36] |
Wang L S, Li D, Zhou Y L, et al. Optimization of hydrogen-ion storage performance of tungsten trioxide nanowires by niobium doping. Nanotechnology, 2022, 33(10): 105403 doi: 10.1088/1361-6528/ac3e8e
|
[37] |
Olkun A, Pat S, Akkurt N, et al. Detailed transmittance analysis of high-performance SnO2-doped WO3 thin films in UV-Vis region for electrochromic devices. J Mater Sci:Mater Electron, 2020, 31(21): 19074 doi: 10.1007/s10854-020-04444-x
|
[38] |
Luo G, Shen L Y, Zheng J M, et al. A europium ion doped WO3 film with the bi-functionality of enhanced electrochromic switching and tunable red emission. J Mater Chem C, 2017, 5(14): 3488 doi: 10.1039/C7TC00248C
|
[39] |
Shen L Y, Luo G, Zheng J M, et al. Effect of pH on the electrochromic and photoluminescent properties of Eu doped WO3 film. Electrochimica Acta, 2018, 278: 263 doi: 10.1016/j.electacta.2018.05.033
|
[40] |
Kunyapat T, Xu F, Neate N, et al. Ce-doped bundled ultrafine diameter tungsten oxide nanowires with enhanced electrochromic performance. Nanoscale, 2018, 10(10): 4718 doi: 10.1039/C7NR08385H
|
[41] |
Shen L Y, Zheng J M, Xu C Y. Enhanced electrochromic switches and tunable green fluorescence based on terbium ion doped WO3 films. Nanoscale, 2019, 11(47): 23049 doi: 10.1039/C9NR06125H
|
[42] |
Bathe S R, Patil P S. WO3 thin films doped with Ru by facile chemical method with enhanced electrochromic properties for electrochromic window application. Mater Sci Eng B, 2020, 257: 114542 doi: 10.1016/j.mseb.2020.114542
|
[43] |
Yin Y, Lan C Y, Hu S M, et al. Effect of Gd-doping on electrochromic properties of sputter deposited WO3 films. J Alloys Compd, 2018, 739: 623 doi: 10.1016/j.jallcom.2017.12.290
|
[44] |
Zeb S, Sun G X, Nie Y, et al. Advanced developments in nonstoichiometric tungsten oxides for electrochromic applications. Mater Adv, 2021, 2(21): 6839 doi: 10.1039/D1MA00418B
|
[45] |
Chang J Y, Chen Y C, Wang C M, et al. Electrochromic properties of lithium-doped tungsten oxide prepared by electron beam evaporation. Coatings, 2019, 9(3): 191 doi: 10.3390/coatings9030191
|
[46] |
Shen K, Sheng K, Wang Z T, et al. Cobalt ions doped tungsten oxide nanowires achieved vertically aligned nanostructure with enhanced electrochromic properties. Appl Surf Sci, 2020, 501: 144003 doi: 10.1016/j.apsusc.2019.144003
|
[47] |
Arslan M, Firat Y E, Tokg?z S R, et al. Fast electrochromic response and high coloration efficiency of Al-doped WO3 thin films for smart window applications. Ceram Int, 2021, 47(23): 32570 doi: 10.1016/j.ceramint.2021.08.152
|
[48] |
Xie Z Q, Zhang Q Q, Liu Q Q, et al. Enhanced electrochromic performance of 2D grid-structured WO3 thin films. Thin Solid Films, 2018, 653: 188 doi: 10.1016/j.tsf.2018.03.044
|
[49] |
Yuan G Z, Hua C Z, Khan S, et al. Improved electrochromic performance of WO3 films with size controlled nanorods. Electrochimica Acta, 2018, 260: 274 doi: 10.1016/j.electacta.2017.10.193
|
[50] |
Heo S, Dahlman C J, Staller C M, et al. Enhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodium ions. Nano Lett, 2020, 20(3): 2072 doi: 10.1021/acs.nanolett.0c00052
|
[51] |
Balaji S, Djaoued Y, Albert A S, et al. Hexagonal tungsten oxide based electrochromic devices: Spectroscopic evidence for the Li ion occupancy of four-coordinated square windows. Chem Mater, 2009, 21(7): 1381 doi: 10.1021/cm8034455
|
[52] |
Evans R C, Ellingworth A, Cashen C J, et al. Influence of single-nanoparticle electrochromic dynamics on the durability and speed of smart windows. Proc Natl Acad Sci USA, 2019, 116(26): 12666 doi: 10.1073/pnas.1822007116
|
[53] |
Guo J J, Wang M, Diao X G, et al. Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 films. J Phys Chem C, 2018, 122(33): 19037 doi: 10.1021/acs.jpcc.8b05692
|
[54] |
Zhao Q, Wang J K, Ai X H, et al. Large-area multifunctional electro-chromic-chemical device made of W17O47 nanowires by Zn2+ ion intercalation. Nano Energy, 2021, 89: 106356 doi: 10.1016/j.nanoen.2021.106356
|
[55] |
Chen X, Li W J, Wang L B, et al. Annealing effect on the electrochromic properties of amorphous WO3 films in Mg2+ based electrolytes. Mater Chem Phys, 2021, 270: 124745 doi: 10.1016/j.matchemphys.2021.124745
|
[56] |
Huo X T, Miao X W, Han X, et al. High-performance electrochromo-supercapacitors based on the synergetic effect between aqueous Al3+ and ordered hexagonal tungsten oxide nanorod arrays. J Mater Chem A, 2020, 8(19): 9927 doi: 10.1039/D0TA01808B
|
[57] |
Li W J, Zhang X, Chen X, et al. Lithiation of WO3 films by evaporation method for all-solid-state electrochromic devices. Electrochimica Acta, 2020, 355: 136817 doi: 10.1016/j.electacta.2020.136817
|
[58] |
Li W J, Zhang X, Chen X, et al. Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices. Chem Eng J, 2020, 398: 125628 doi: 10.1016/j.cej.2020.125628
|
[59] |
Zhao Y M, Zhang X, Li W J, et al. High-performance electrochromic WO3 film driven by controllable crystalline structure and its all-solid-state device. Sol Energy Mater Sol Cells, 2022, 237: 111564 doi: 10.1016/j.solmat.2021.111564
|
[60] |
Jeong C Y, Kubota T, Chotsuwan C, et al. All-solid-state electrochromic device using polymer electrolytes with a wet-coated electrochromic layer. J Electroanal Chem, 2021, 897: 115614 doi: 10.1016/j.jelechem.2021.115614
|
[61] |
Shao Z W, Huang A B, Ming C, et al. All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat Electron, 2022, 5(1): 45 doi: 10.1038/s41928-021-00697-4
|
[62] |
菅夏琰, 金俊騰, 王瑤, 等. 鈉離子電池層狀氧化物正極材料研究進展. 工程科學學報, 2022, 44(4):601 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204013
Jian X Y, Jin J T, Wang Y, et al. Recent progress on layered oxide cathode materials for sodium-ion batteries. Chin J Eng, 2022, 44(4): 601 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204013
|
[63] |
Wang C W, Fu K, Kammampata S P, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem Rev, 2020, 120(10): 4257 doi: 10.1021/acs.chemrev.9b00427
|
[64] |
Zhang S L, Li Y, Zhang T R, et al. Dual-band electrochromic devices with a transparent conductive capacitive charge-balancing anode. ACS Appl Mater Interfaces, 2019, 11(51): 48062 doi: 10.1021/acsami.9b17678
|
[65] |
Huang Q Y, Cao S, Liu Y W, et al. Boosting the Zn2+-based electrochromic properties of tungsten oxide through morphology control. Sol Energy Mater Sol Cells, 2021, 220: 110853 doi: 10.1016/j.solmat.2020.110853
|
[66] |
Chen J, Wang Z, Chen Z G, et al. Fabry-perot cavity-type electrochromic supercapacitors with exceptionally versatile color tunability. Nano Lett, 2020, 20(3): 1915 doi: 10.1021/acs.nanolett.9b05152
|
[67] |
武琦, 叢杉, 趙志剛. 多彩氧化鎢薄膜的紅外電致變色性能研究. 無機材料學報, 2021, 36(5):485 doi: 10.15541/jim20200463
Wu Q, Cong S, Zhao Z G. Infrared electrochromic property of the colorful tungsten oxide films. J Inorg Mater, 2021, 36(5): 485 doi: 10.15541/jim20200463
|