Citation: | ZHU Geng-jie, ZHU Wan-cheng, QI Zhao-jun, HOU Chen. Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1304-1315. doi: 10.13374/j.issn2095-9389.2022.06.24.001 |
[1] |
吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1 doi: 10.19614/j.cnki.jsks.202101001
Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1 doi: 10.19614/j.cnki.jsks.202101001
|
[2] |
Shen Z X, Zhang Q, Chen D L, et al. Varying effects of mining development on ecological conditions and groundwater storage in dry region in Inner Mongolia of China. J Hydrol, 2021, 597: 125759 doi: 10.1016/j.jhydrol.2020.125759
|
[3] |
阮竹恩, 吳愛祥, 王貽明, 等. 全固廢膏體關鍵性能指標的多目標優化. 工程科學學報, 2022, 44(4):496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004
Ruan Z E, Wu A X, Wang Y M, et al. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste. Chin J Eng, 2022, 44(4): 496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004
|
[4] |
楊春和, 張超, 李全明, 等. 大型高尾礦壩災變機制與防控方法. 巖土力學, 2021, 42(1):1 doi: 10.16285/j.rsm.2020.1653
Yang C H, Zhang C, Li Q M, et al. Disaster mechanism and prevention methods of large-scale high tailings dam. Rock Soil Mech, 2021, 42(1): 1 doi: 10.16285/j.rsm.2020.1653
|
[5] |
Amari K E, Hibti M. A comparison between kinetic test results and natural weathering: The abandoned kettara mine tailings pond. Mine Water Environ, 2020, 39(1): 157 doi: 10.1007/s10230-019-00642-0
|
[6] |
蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
|
[7] |
程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002
Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002
|
[8] |
吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
|
[9] |
Benzaazoua M, Fall M, Belem T. A contribution to understanding the hardening process of cemented pastefill. Miner Eng, 2004, 17(2): 141 doi: 10.1016/j.mineng.2003.10.022
|
[10] |
于潤滄. 金屬礦山膠結充填理論與工程實踐. 北京: 冶金工業出版社, 2020
Yu R C. Theory and Engineering Practice of Metal Cemented Filling in Mines. Beijing: Metallurgical Industry Press, 2020
|
[11] |
吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015
Wu A X, Wang H J. Theory and Technology of Metal Paste Filling. Beijing: Science Press, 2015
|
[12] |
Tariq A, Yanful E K. A review of binders used in cemented paste tailings for underground and surface disposal practices. J Environ Manag, 2013, 131: 138 doi: 10.1016/j.jenvman.2013.09.039
|
[13] |
Xu W B, Li Q L, Liu B. Coupled effect of curing temperature and age on compressive behavior, microstructure and ultrasonic properties of cemented tailings backfill. Constr Build Mater, 2020, 237: 117738 doi: 10.1016/j.conbuildmat.2019.117738
|
[14] |
Aprianti E, Shafigh P, Bahri S, et al. Supplementary cementitious materials origin from agricultural wastes - A review. Constr Build Mater, 2015, 74: 176 doi: 10.1016/j.conbuildmat.2014.10.010
|
[15] |
Qiu J P, Guo Z B, Yang L, et al. Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill. Constr Build Mater, 2020, 263: 120645 doi: 10.1016/j.conbuildmat.2020.120645
|
[16] |
姜關照, 吳愛祥, 王貽明. 堿激發水泥–磷渣固化性能及與含硫尾砂的相容性. 工程科學學報, 2020, 42(8):963
Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement-phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963
|
[17] |
張耀君, 楊夢陽, 康樂, 等. 一類新型堿激發膠凝材料催化劑的研究進展. 無機材料學報, 2016, 31(3):225 doi: 10.15541/jim20150412
Zhang Y J, Yang M Y, Kang L, et al. Research progresses of new type alkali–activated cementitious material catalyst. J Inorg Mater, 2016, 31(3): 225 doi: 10.15541/jim20150412
|
[18] |
Wu P, Wang J X, Hu S G, et al. Preparation and performance of slag-based binders for the cementation of fine tailings. J Adhesion Sci Technol, 2018, 32(9): 976 doi: 10.1080/01694243.2017.1394034
|
[19] |
王海峰, 嚴捍東, 楊偉. 堿激發粉煤灰水泥再生瀝青混凝土性能研究. 武漢大學學報(工學版), 2019, 52(6):504 doi: 10.14188/j.1671-8844.2019-06-005
Wang H F, Yan H D, Yang W. Properties of alkali-activated fly-ash and cement recycled asphalt concrete. Eng J Wuhan Univ, 2019, 52(6): 504 doi: 10.14188/j.1671-8844.2019-06-005
|
[20] |
Rashad A M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for Civil Engineer. Constr Build Mater, 2013, 47: 29 doi: 10.1016/j.conbuildmat.2013.04.011
|
[21] |
溫震江. 鋼渣協同礦渣制備超細尾砂充填膠結料及應用研究[學位論文]. 北京: 北京科技大學, 2022
Wen Z J. Study on Preparation and Application of Binder with Steel Slag and Slag for the Cemented Superfine Tailings Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2022
|
[22] |
徐向宏, 何明珠. 試驗設計與Design-Expert、SPSS應用. 北京: 科學出版社, 2010
Xu X H, He M Z. Experiment and Application of Design-Expert and SPSS. Beijing: Science Press, 2010
|
[23] |
Arroyo-López F N, Bautista-Gallego J, Chiesa A, et al. Use of a D-optimal mixture design to estimate the effects of diverse chloride salts on the growth parameters of Lactobacillus pentosus. Food Microbiol, 2009, 26(4): 396 doi: 10.1016/j.fm.2009.01.009
|
[24] |
Yeom D W, Song Y S, Kim S R, et al. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomedicine, 2015, 10: 3865
|
[25] |
郭金玉, 郝成亮, 王靈雙, 等. 基于D-最優混料設計的長焰煤浮選藥劑的優化. 煤炭學報, 2019, 44(6):1883 doi: 10.13225/j.cnki.jccs.2018.0968
Guo J Y, Hao C L, Wang L S, et al. Optimization of flotation agents of long-flame coal by D-optimal mixture design. J China Coal Soc, 2019, 44(6): 1883 doi: 10.13225/j.cnki.jccs.2018.0968
|
[26] |
鄭文忠, 鄒夢娜, 王英. 堿激發膠凝材料研究進展. 建筑結構學報, 2019, 40(1):28 doi: 10.14006/j.jzjgxb.2019.01.003
Zheng W Z, Zou M N, Wang Y. Research progress of alkali-activated cementitious materials. J Build Struct, 2019, 40(1): 28 doi: 10.14006/j.jzjgxb.2019.01.003
|
[27] |
楊志強, 高謙, 王永前, 等. 利用金川水淬鎳渣尾砂開發新型充填膠凝劑試驗研究. 巖土工程學報, 2014, 36(8):1498 doi: 10.11779/CJGE201408016
Yang Z Q, Gao Q, Wang Y Q, et al. Experimental study on new filling cementing material using water-hardening nickel slag tailings of Jinchuan Mine. Chin J Geotech Eng, 2014, 36(8): 1498 doi: 10.11779/CJGE201408016
|
[28] |
米貴東. 多組分復合膠凝材料體系水化性能研究[學位論文]. 北京: 清華大學, 2016
Mi G D. Studies on the Hydration Performance of Complex Cementitious Materials [Dissertation]. Beijing: Tsinghua University, 2016
|
[29] |
Rashad A M. An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr Build Mater, 2018, 187: 89 doi: 10.1016/j.conbuildmat.2018.07.150
|
[30] |
崔潮, 彭暉, 劉揚, 等. 礦渣摻量及激發劑模數對偏高嶺土基地聚物常溫固化的影響. 建筑材料學報, 2017, 20(4):535 doi: 10.3969/j.issn.1007-9629.2017.04.008
Cui C, Peng H, Liu Y, et al. Influence of GGBFS content and activator modulus on curing of metakaolin based geopolymer at ambient temperature. J Build Mater, 2017, 20(4): 535 doi: 10.3969/j.issn.1007-9629.2017.04.008
|
[31] |
Song S J, Jennings H M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res, 1999, 29(2): 159 doi: 10.1016/S0008-8846(98)00212-9
|
[32] |
韓方暉, 王棟民, 閻培渝. 含不同摻量礦渣或粉煤灰的復合膠凝材料的水化動力學. 硅酸鹽學報, 2014, 42(5):613 doi: 10.7521/j.issn.0454-5648.2014.05.10
Han F H, Wang D M, Yan P Y. Hydration kinetics of composite binder containing different content of slag or fly ash. J Chin Ceram Soc, 2014, 42(5): 613 doi: 10.7521/j.issn.0454-5648.2014.05.10
|
[33] |
劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457
Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457
|
[34] |
Brough A R, Holloway M, Sykes J, et al. Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid. Cem Concr Res, 2000, 30(9): 1375
|
[35] |
Zhang J, Shi C J, Zhang Z H, et al. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr Build Mater, 2017, 152: 598 doi: 10.1016/j.conbuildmat.2017.07.027
|