<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
ZHU Geng-jie, ZHU Wan-cheng, QI Zhao-jun, HOU Chen. Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1304-1315. doi: 10.13374/j.issn2095-9389.2022.06.24.001
Citation: ZHU Geng-jie, ZHU Wan-cheng, QI Zhao-jun, HOU Chen. Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1304-1315. doi: 10.13374/j.issn2095-9389.2022.06.24.001

Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism

doi: 10.13374/j.issn2095-9389.2022.06.24.001
More Information
  • Corresponding author: E-mail: zhuwancheng@mail.neu.edu.cn
  • Received Date: 2022-06-24
    Available Online: 2022-09-02
  • Publish Date: 2023-08-25
  • The key to obtaining high-strength backfill is the cementing material used for backfilling. Therefore, to prepare a new slag-based binder for cemented tailings backfill, hydrated lime, desulfurized gypsum, sodium sulfate, and sodium hydroxide were selected as slag activators. Firstly, the D-optimal mixture design method was used to develop the strength regression model, analyze the influence of hydrated lime, desulfurized gypsum, sodium sulfate, and sodium hydroxide on the strength, and determine the best ratio of slag activator. Secondly, after optimizing the slag content, the optimum proportion of the binder was obtained. Lastly, X-ray diffraction and scanning electron microscopy were used to study the internal mechanism of the hydration products of the slag-based binder, the microstructure of backfill, and strength formation. The results show that the D-optimal mixture design method is a good method of obtaining the formula of the mixture with a less experimental amount. The sensitivity order to slag is sodium hydroxide > hydrated lime > desulfurized gypsum > sodium sulfate, and there are different degrees of interaction, so the weighing accuracy should be considered when batching. At the optimum mass ratio of binder (slag 85.00%, slaked lime 8.03%, sodium sulfate 3.96%, desulfurized gypsum 1.85%, and sodium hydroxide 1.16%), the early strength (1–3 d) is 3.5 times higher than that of cement, and the late strength (7–28 d) is at least two times higher than that of cement. The increased strength of hardened backfill cemented is closely related to ettringite (AFt) and C–S–H, the two primary hydration products of the new slag-based binder. During the early stages of hydration, a large amount of AFt rapidly nucleated on the surface of the slag, the distance between the tailing particles provided plenty of space for ettringite growth, and its long prismatic structure continuously extended into the intergranular pores. The rapid formation of early strength of backfill is primarily because of the physical filling effect of ettringite. In the later stage, the strength of the backfill is primarily attributed to the wrapping and bonding effect of C–S–H, which further optimizes the compact structure of the backfill. The high-strength backfill can be obtained using the new slag-based cementitious material, which is of great significance for safe and efficient mining. The slag-based binder that contains 86.94% (mass fraction) of industrial solid waste helps solve the problem of desulfurized gypsum of coal-fired power plants and mine tailings. Additionally, the D-optimal mixture design proved to be an effective method for designing and optimizing the ratio of multicomponent materials, such as binders and activator components.

     

  • loading
  • [1]
    吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1 doi: 10.19614/j.cnki.jsks.202101001

    Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1 doi: 10.19614/j.cnki.jsks.202101001
    [2]
    Shen Z X, Zhang Q, Chen D L, et al. Varying effects of mining development on ecological conditions and groundwater storage in dry region in Inner Mongolia of China. J Hydrol, 2021, 597: 125759 doi: 10.1016/j.jhydrol.2020.125759
    [3]
    阮竹恩, 吳愛祥, 王貽明, 等. 全固廢膏體關鍵性能指標的多目標優化. 工程科學學報, 2022, 44(4):496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004

    Ruan Z E, Wu A X, Wang Y M, et al. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste. Chin J Eng, 2022, 44(4): 496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004
    [4]
    楊春和, 張超, 李全明, 等. 大型高尾礦壩災變機制與防控方法. 巖土力學, 2021, 42(1):1 doi: 10.16285/j.rsm.2020.1653

    Yang C H, Zhang C, Li Q M, et al. Disaster mechanism and prevention methods of large-scale high tailings dam. Rock Soil Mech, 2021, 42(1): 1 doi: 10.16285/j.rsm.2020.1653
    [5]
    Amari K E, Hibti M. A comparison between kinetic test results and natural weathering: The abandoned kettara mine tailings pond. Mine Water Environ, 2020, 39(1): 157 doi: 10.1007/s10230-019-00642-0
    [6]
    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417

    Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
    [7]
    程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002

    Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002
    [8]
    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
    [9]
    Benzaazoua M, Fall M, Belem T. A contribution to understanding the hardening process of cemented pastefill. Miner Eng, 2004, 17(2): 141 doi: 10.1016/j.mineng.2003.10.022
    [10]
    于潤滄. 金屬礦山膠結充填理論與工程實踐. 北京: 冶金工業出版社, 2020

    Yu R C. Theory and Engineering Practice of Metal Cemented Filling in Mines. Beijing: Metallurgical Industry Press, 2020
    [11]
    吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015

    Wu A X, Wang H J. Theory and Technology of Metal Paste Filling. Beijing: Science Press, 2015
    [12]
    Tariq A, Yanful E K. A review of binders used in cemented paste tailings for underground and surface disposal practices. J Environ Manag, 2013, 131: 138 doi: 10.1016/j.jenvman.2013.09.039
    [13]
    Xu W B, Li Q L, Liu B. Coupled effect of curing temperature and age on compressive behavior, microstructure and ultrasonic properties of cemented tailings backfill. Constr Build Mater, 2020, 237: 117738 doi: 10.1016/j.conbuildmat.2019.117738
    [14]
    Aprianti E, Shafigh P, Bahri S, et al. Supplementary cementitious materials origin from agricultural wastes - A review. Constr Build Mater, 2015, 74: 176 doi: 10.1016/j.conbuildmat.2014.10.010
    [15]
    Qiu J P, Guo Z B, Yang L, et al. Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill. Constr Build Mater, 2020, 263: 120645 doi: 10.1016/j.conbuildmat.2020.120645
    [16]
    姜關照, 吳愛祥, 王貽明. 堿激發水泥–磷渣固化性能及與含硫尾砂的相容性. 工程科學學報, 2020, 42(8):963

    Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement-phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963
    [17]
    張耀君, 楊夢陽, 康樂, 等. 一類新型堿激發膠凝材料催化劑的研究進展. 無機材料學報, 2016, 31(3):225 doi: 10.15541/jim20150412

    Zhang Y J, Yang M Y, Kang L, et al. Research progresses of new type alkali–activated cementitious material catalyst. J Inorg Mater, 2016, 31(3): 225 doi: 10.15541/jim20150412
    [18]
    Wu P, Wang J X, Hu S G, et al. Preparation and performance of slag-based binders for the cementation of fine tailings. J Adhesion Sci Technol, 2018, 32(9): 976 doi: 10.1080/01694243.2017.1394034
    [19]
    王海峰, 嚴捍東, 楊偉. 堿激發粉煤灰水泥再生瀝青混凝土性能研究. 武漢大學學報(工學版), 2019, 52(6):504 doi: 10.14188/j.1671-8844.2019-06-005

    Wang H F, Yan H D, Yang W. Properties of alkali-activated fly-ash and cement recycled asphalt concrete. Eng J Wuhan Univ, 2019, 52(6): 504 doi: 10.14188/j.1671-8844.2019-06-005
    [20]
    Rashad A M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for Civil Engineer. Constr Build Mater, 2013, 47: 29 doi: 10.1016/j.conbuildmat.2013.04.011
    [21]
    溫震江. 鋼渣協同礦渣制備超細尾砂充填膠結料及應用研究[學位論文]. 北京: 北京科技大學, 2022

    Wen Z J. Study on Preparation and Application of Binder with Steel Slag and Slag for the Cemented Superfine Tailings Backfill [Dissertation]. Beijing: University of Science and Technology Beijing, 2022
    [22]
    徐向宏, 何明珠. 試驗設計與Design-Expert、SPSS應用. 北京: 科學出版社, 2010

    Xu X H, He M Z. Experiment and Application of Design-Expert and SPSS. Beijing: Science Press, 2010
    [23]
    Arroyo-López F N, Bautista-Gallego J, Chiesa A, et al. Use of a D-optimal mixture design to estimate the effects of diverse chloride salts on the growth parameters of Lactobacillus pentosus. Food Microbiol, 2009, 26(4): 396 doi: 10.1016/j.fm.2009.01.009
    [24]
    Yeom D W, Song Y S, Kim S R, et al. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomedicine, 2015, 10: 3865
    [25]
    郭金玉, 郝成亮, 王靈雙, 等. 基于D-最優混料設計的長焰煤浮選藥劑的優化. 煤炭學報, 2019, 44(6):1883 doi: 10.13225/j.cnki.jccs.2018.0968

    Guo J Y, Hao C L, Wang L S, et al. Optimization of flotation agents of long-flame coal by D-optimal mixture design. J China Coal Soc, 2019, 44(6): 1883 doi: 10.13225/j.cnki.jccs.2018.0968
    [26]
    鄭文忠, 鄒夢娜, 王英. 堿激發膠凝材料研究進展. 建筑結構學報, 2019, 40(1):28 doi: 10.14006/j.jzjgxb.2019.01.003

    Zheng W Z, Zou M N, Wang Y. Research progress of alkali-activated cementitious materials. J Build Struct, 2019, 40(1): 28 doi: 10.14006/j.jzjgxb.2019.01.003
    [27]
    楊志強, 高謙, 王永前, 等. 利用金川水淬鎳渣尾砂開發新型充填膠凝劑試驗研究. 巖土工程學報, 2014, 36(8):1498 doi: 10.11779/CJGE201408016

    Yang Z Q, Gao Q, Wang Y Q, et al. Experimental study on new filling cementing material using water-hardening nickel slag tailings of Jinchuan Mine. Chin J Geotech Eng, 2014, 36(8): 1498 doi: 10.11779/CJGE201408016
    [28]
    米貴東. 多組分復合膠凝材料體系水化性能研究[學位論文]. 北京: 清華大學, 2016

    Mi G D. Studies on the Hydration Performance of Complex Cementitious Materials [Dissertation]. Beijing: Tsinghua University, 2016
    [29]
    Rashad A M. An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr Build Mater, 2018, 187: 89 doi: 10.1016/j.conbuildmat.2018.07.150
    [30]
    崔潮, 彭暉, 劉揚, 等. 礦渣摻量及激發劑模數對偏高嶺土基地聚物常溫固化的影響. 建筑材料學報, 2017, 20(4):535 doi: 10.3969/j.issn.1007-9629.2017.04.008

    Cui C, Peng H, Liu Y, et al. Influence of GGBFS content and activator modulus on curing of metakaolin based geopolymer at ambient temperature. J Build Mater, 2017, 20(4): 535 doi: 10.3969/j.issn.1007-9629.2017.04.008
    [31]
    Song S J, Jennings H M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res, 1999, 29(2): 159 doi: 10.1016/S0008-8846(98)00212-9
    [32]
    韓方暉, 王棟民, 閻培渝. 含不同摻量礦渣或粉煤灰的復合膠凝材料的水化動力學. 硅酸鹽學報, 2014, 42(5):613 doi: 10.7521/j.issn.0454-5648.2014.05.10

    Han F H, Wang D M, Yan P Y. Hydration kinetics of composite binder containing different content of slag or fly ash. J Chin Ceram Soc, 2014, 42(5): 613 doi: 10.7521/j.issn.0454-5648.2014.05.10
    [33]
    劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457

    Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457
    [34]
    Brough A R, Holloway M, Sykes J, et al. Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid. Cem Concr Res, 2000, 30(9): 1375
    [35]
    Zhang J, Shi C J, Zhang Z H, et al. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr Build Mater, 2017, 152: 598 doi: 10.1016/j.conbuildmat.2017.07.027
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views (480) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164