Citation: | LIU Zhi-peng, XIE Zhen-jia, LUO Deng, ZHOU Wen-hao, GUO Hui, SHANG Cheng-jia. Influence of central segregation on the welding microstructure and properties of FH40 cryogenic steel[J]. Chinese Journal of Engineering, 2023, 45(8): 1335-1341. doi: 10.13374/j.issn2095-9389.2022.06.21.003 |
[1] |
胡曉娜, 吳彼, 陳威, 等. 極地船舶用低溫鋼耐磨性的研究進展. 鞍鋼技術, 2021(6):5
Hu X N, Wu B, Chen W, et al. Research progress on wear resistance of low-temperature steel for ships in polar regions. Angang Technol, 2021(6): 5
|
[2] |
Li Z R, Zhang D C, Wu H Y, et al. Fatigue properties of welded Q420 high strength steel at room and low temperatures. Constr Build Mater, 2018, 189: 955 doi: 10.1016/j.conbuildmat.2018.07.231
|
[3] |
駱巧云, 壽建敏. 北極東北航道LNG運輸經濟性與前景分析. 大連海事大學學報, 2016, 42(3):49 doi: 10.16411/j.cnki.issn1006-7736.2016.03.009
Luo Q Y, Shou J M. Economic viability and prospects of LNG transportation through the Arctic Northeast passage. J Dalian Marit Univ, 2016, 42(3): 49 doi: 10.16411/j.cnki.issn1006-7736.2016.03.009
|
[4] |
王超逸, 夏呈祥, 王東勝, 等. 新型F級船用低溫鋼表面氧化物對其耐磨性能影響研究. 中國腐蝕與防護學報, 2022, 42(3):395 doi: 10.11902/1005.4537.2021.254
Wang C Y, Xia C X, Wang D S, et al. Effect of surface oxides on wear resistance of new F-class marine low temperature steel. J Chin Soc Corros Prot, 2022, 42(3): 395 doi: 10.11902/1005.4537.2021.254
|
[5] |
張麗紅, 陳芙蓉. 低溫鋼及其低溫韌性研究現狀. 電焊機, 2020, 50(12):88 doi: 10.7512/j.issn.1001-2303.2020.12.18
Zhang L H, Chen F R. Research status of low-temperature steel and its low-temperature toughness. Electr Weld Mach, 2020, 50(12): 88 doi: 10.7512/j.issn.1001-2303.2020.12.18
|
[6] |
徐永林, 李京社, 徐莉. 首鋼TMCP工藝E/F級高強船板冶煉工藝. 北京科技大學學報, 2011, 33(增刊 1):108 doi: 10.13374/j.issn1001-053x.2011.s1.025
Xu Y L, Li J S, Xu L. TMCP of E/F grade high-strength ship plates in Shougang Co. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 108 doi: 10.13374/j.issn1001-053x.2011.s1.025
|
[7] |
劉學一, 王彥鋒, 江衛華, 等. 低碳TMCP工藝開發F36高強船板鋼. 熱加工工藝, 2010, 39(14):15 doi: 10.3969/j.issn.1001-3814.2010.14.005
Liu X Y, Wang Y F, Jiang W H, et al. Development of F36 hull plate by TMCP process. Hot Work Treatment, 2010, 39(14): 15 doi: 10.3969/j.issn.1001-3814.2010.14.005
|
[8] |
褚峰, 嚴佳, 戴亮亮, 等. 軋制冷卻工藝對LT-FH32低溫鋼組織及性能的影響. 熱加工工藝, 2019, 48(15):37
Chu F, Yan J, Dai L L, et al. Effect of rolling cooling process on microstructure and properties of LT-FH32 low temperature steel. Hot Work Technol, 2019, 48(15): 37
|
[9] |
肖大恒, 湯偉, 羅登, 等. 超大型液化石油氣船用低溫鋼組織性能. 鋼鐵, 2020, 55(4):82 doi: 10.13228/j.boyuan.issn0449-749x.20190330
Xiao D H, Tang W, Luo D, et al. Microstructure and properties of low temperature steel for ultra large liquefied petroleum gas carrier. Iron Steel, 2020, 55(4): 82 doi: 10.13228/j.boyuan.issn0449-749x.20190330
|
[10] |
劉志遠, 王重君, 蔡兆鎮, 等. 含鈮微合金鋼連鑄坯角部裂紋控制二冷新工藝. 中國冶金, 2018, 28(3):22 doi: 10.13228/j.boyuan.issn1006-9356.20170230
Liu Z Y, Wang C J, Cai Z Z, et al. New secondary cooling process for transverse corner crack control of Nb micro-alloyed steel slab. China Metall, 2018, 28(3): 22 doi: 10.13228/j.boyuan.issn1006-9356.20170230
|
[11] |
卿家勝, 沈厚發, 劉明. 高強耐候鋼YQ450NQR1釩氮微合金化. 鋼鐵, 2017, 52(5):87 doi: 10.13228/j.boyuan.issn0449-749x.20160428
Qing J S, Shen H F, Liu M. V-N microalloying of high strength weathering steel YQ450NQR1. Iron &Steel, 2017, 52(5): 87 doi: 10.13228/j.boyuan.issn0449-749x.20160428
|
[12] |
陳杰, 李紅英, 周文浩, 等. 熱輸入對Q1100鋼焊接接頭低溫韌性及耐蝕性能的影響. 材料研究學報, 2022, 36(8):617
Chen J, Li H Y, Zhou W H, et al. Effect of heat input on low temperature toughness and corrosion resistance of Q1100 steel welded joints. Chin J Mater Res, 2022, 36(8): 617
|
[13] |
王晶, 董俊慧. 焊接工藝對16MnR鋼接頭組織和低溫性能的影響. 熱加工工藝, 2009, 38(11):8 doi: 10.3969/j.issn.1001-3814.2009.11.003
Wang J, Dong J H. Effect of welding process on microstructure and cryogenic properties of welded joint of 16MnR steel. Hot Work Technol, 2009, 38(11): 8 doi: 10.3969/j.issn.1001-3814.2009.11.003
|
[14] |
季益龍, 劉建華, 陳方, 等. F550船板鋼中心偏析遺傳性研究 //“第十屆中國鋼鐵年會”暨“第六屆寶鋼學術年會” 上海, 2015: 663
Ji Y L, Liu J H, Chen F, et al. Research on centerline segregation heredity of F550 shipbuilding steel // Proceedings of China Iron & Steel Annual Meeting and Annual Academic of BaoSteel. Shanghai, 2015: 663
|
[15] |
介瑞華. 120t BOF-LF-RH-Φ300mm CC-CR流程42CrMoA鋼軋材帶狀組織形成分析及改善措施. 特殊鋼, 2021, 42(4):81 doi: 10.3969/j.issn.1003-8620.2021.04.019
Jie R H. Analysis and improvement measures on band structure formation of 42CrMoA rolled steel with 120t BOF-LF-RH-Φ300 mm CC-CR flowsheet. Special Steel, 2021, 42(4): 81 doi: 10.3969/j.issn.1003-8620.2021.04.019
|
[16] |
楊建桃, 田陸, 包燕平. 連鑄坯中心偏析檢測. 連鑄, 2013, 38(4):32
Yang J T, Tian L, Bao Y P. Test of slabs center segregation. Continuous Cast, 2013, 38(4): 32
|
[17] |
Liang J H, Zhao Z Z, Tang D, et al. Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath matrix. Mater Sci Eng A, 2018, 711: 175 doi: 10.1016/j.msea.2017.11.046
|
[18] |
翁宇慶, 孔令航, 王國棟, 等. 超細晶鋼: 鋼的組織細化理論與控制技術. 北京: 冶金工業出版社, 2003
Weng Y Q, Kong L H, Wang G D, et al. Ultrafine Grained Steel: The Refinement Theory and Controlled Technology of Steel. Beijing: Metallurgical Industry Press, 2003
|
[19] |
Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction. Microsc Microanal, 2011, 17(3): 316 doi: 10.1017/S1431927611000055
|
[20] |
Wang J L, Hong H, Huang A R, et al. New insight into the relationship between grain boundaries and hardness in bainitic/martensitic steels from the crystallographic perspective. Mater Lett, 2022, 308: 131105 doi: 10.1016/j.matlet.2021.131105
|
[21] |
Guo F J, Wang X L, Liu W L, et al. The influence of centerline segregation on the mechanical performance and microstructure of X70 pipeline steel. Steel Res Int, 2018, 89(12): 1800407 doi: 10.1002/srin.201800407
|
[22] |
Wang J L, Guo F J, Wang Z Q, et al. Influence of centerline segregation on the crystallographic features and mechanical properties of a high-strength low-alloy steel. Mater Lett, 2020, 267: 127512 doi: 10.1016/j.matlet.2020.127512
|
[23] |
Yu Y S, Hu B, Gao M L, et al. Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel. Int J Miner Metall Mater, 2021, 28(5): 816 doi: 10.1007/s12613-020-2235-5
|
[24] |
王長順, 郭福建, 李廣龍, 等. 中心偏析控制對型鋼低溫韌性的影響. 鋼鐵, 2019, 54(8):202
Wang C S, Guo F J, Li G L, et al. Influence of central segregation control on low temperature toughness of steel. Iron Steel, 2019, 54(8): 202
|
[25] |
紀元, 閔云峰, 李鵬善, 等. 鋼中帶狀組織及其研究現狀. 中國冶金, 2016, 26(4):1
Ji Y, Min Y F, Li P S, et al. Research status of banding phenomena in steels. China Metall, 2016, 26(4): 1
|