<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
LIU Zhi-peng, XIE Zhen-jia, LUO Deng, ZHOU Wen-hao, GUO Hui, SHANG Cheng-jia. Influence of central segregation on the welding microstructure and properties of FH40 cryogenic steel[J]. Chinese Journal of Engineering, 2023, 45(8): 1335-1341. doi: 10.13374/j.issn2095-9389.2022.06.21.003
Citation: LIU Zhi-peng, XIE Zhen-jia, LUO Deng, ZHOU Wen-hao, GUO Hui, SHANG Cheng-jia. Influence of central segregation on the welding microstructure and properties of FH40 cryogenic steel[J]. Chinese Journal of Engineering, 2023, 45(8): 1335-1341. doi: 10.13374/j.issn2095-9389.2022.06.21.003

Influence of central segregation on the welding microstructure and properties of FH40 cryogenic steel

doi: 10.13374/j.issn2095-9389.2022.06.21.003
More Information
  • Corresponding author: E-mail: zjxie@ustb.edu.cn
  • Received Date: 2022-06-21
    Available Online: 2022-09-13
  • Publish Date: 2023-08-25
  • With the development of energy extraction to offshore, deep sea, and polar fields, the service environment is becoming increasingly harsh. Hence, developing cryogenic steel with high strength, high toughness at low temperatures, and excellent welding properties has become an urgent requirement for economic development. With equipment and technology innovation, although the FH40-grade cryogenic steel base metal can be developed by grain refinement, the low-temperature impact toughness of its welded joints might be drastically reduced. Thus, the application of FH40-grade cryogenic steel has been severely restricted. To examine the evolution of the microstructure of welded joints of FH40-grade cryogenic steel and its effect on low-temperature impact toughness, the macrostructure, microstructure morphology, and composition at the welded joints were analyzed using a metallographic optical microscope and through scanning electron microscopy, electron backscatter diffraction (EBSD), and energy dispersive spectroscopy (EDS) analysis, respectively. The results indicate that the FH40 cryogenic steel base metal has excellent comprehensive mechanical properties with a yield strength of 420 MPa, tensile strength of 518 MPa, and Charpy impact energy of 162 J at ?60 ℃, while the low-temperature toughness of the joint fusion line and the heat-affected zone was drastically reduced to 16 J. Results of a microstructure analysis indicate that the base metal of cryogenic steel was a fine polygonal ferrite and pearlite structure and pearlite bands occurred at the core position. The microstructure of the heat-affected zone of welding was mainly acicular ferrite, but evident martensitic bands were observed in the core. The results of the Vickers hardness test revealed that the hardness of 229.7 HV0.05 for acicular ferrite and 313.7 HV0.05 for martensite, which were approximately 40 HV0.05 and 140 HV0.05 higher than the original polygonal ferrite, respectively. An EBSD analysis indicates that the kernel average misorientation of the martensitic band was high with high internal stresses, which was the main cause of the sharp decrease in the low-temperature toughness of the welded joint. The presence of severe bias of carbon and manganese elements was confirmed through the EDS analysis of the banding in the heat-affected zone. In the rolling process, many continuous pearlite-banded structures were formed due to the severe central segregation of the base metal. In the welding process, the local hardenability increases due to the high local composition, and the martensite of hard and brittle phases was formed in the rapid cooling process, causing the increase in the local stress and hardness. Thus, the mismatch between soft and hard phases and organization led to a sharp decrease in the low-temperature toughness of the welded joint.

     

  • loading
  • [1]
    胡曉娜, 吳彼, 陳威, 等. 極地船舶用低溫鋼耐磨性的研究進展. 鞍鋼技術, 2021(6):5

    Hu X N, Wu B, Chen W, et al. Research progress on wear resistance of low-temperature steel for ships in polar regions. Angang Technol, 2021(6): 5
    [2]
    Li Z R, Zhang D C, Wu H Y, et al. Fatigue properties of welded Q420 high strength steel at room and low temperatures. Constr Build Mater, 2018, 189: 955 doi: 10.1016/j.conbuildmat.2018.07.231
    [3]
    駱巧云, 壽建敏. 北極東北航道LNG運輸經濟性與前景分析. 大連海事大學學報, 2016, 42(3):49 doi: 10.16411/j.cnki.issn1006-7736.2016.03.009

    Luo Q Y, Shou J M. Economic viability and prospects of LNG transportation through the Arctic Northeast passage. J Dalian Marit Univ, 2016, 42(3): 49 doi: 10.16411/j.cnki.issn1006-7736.2016.03.009
    [4]
    王超逸, 夏呈祥, 王東勝, 等. 新型F級船用低溫鋼表面氧化物對其耐磨性能影響研究. 中國腐蝕與防護學報, 2022, 42(3):395 doi: 10.11902/1005.4537.2021.254

    Wang C Y, Xia C X, Wang D S, et al. Effect of surface oxides on wear resistance of new F-class marine low temperature steel. J Chin Soc Corros Prot, 2022, 42(3): 395 doi: 10.11902/1005.4537.2021.254
    [5]
    張麗紅, 陳芙蓉. 低溫鋼及其低溫韌性研究現狀. 電焊機, 2020, 50(12):88 doi: 10.7512/j.issn.1001-2303.2020.12.18

    Zhang L H, Chen F R. Research status of low-temperature steel and its low-temperature toughness. Electr Weld Mach, 2020, 50(12): 88 doi: 10.7512/j.issn.1001-2303.2020.12.18
    [6]
    徐永林, 李京社, 徐莉. 首鋼TMCP工藝E/F級高強船板冶煉工藝. 北京科技大學學報, 2011, 33(增刊 1):108 doi: 10.13374/j.issn1001-053x.2011.s1.025

    Xu Y L, Li J S, Xu L. TMCP of E/F grade high-strength ship plates in Shougang Co. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 108 doi: 10.13374/j.issn1001-053x.2011.s1.025
    [7]
    劉學一, 王彥鋒, 江衛華, 等. 低碳TMCP工藝開發F36高強船板鋼. 熱加工工藝, 2010, 39(14):15 doi: 10.3969/j.issn.1001-3814.2010.14.005

    Liu X Y, Wang Y F, Jiang W H, et al. Development of F36 hull plate by TMCP process. Hot Work Treatment, 2010, 39(14): 15 doi: 10.3969/j.issn.1001-3814.2010.14.005
    [8]
    褚峰, 嚴佳, 戴亮亮, 等. 軋制冷卻工藝對LT-FH32低溫鋼組織及性能的影響. 熱加工工藝, 2019, 48(15):37

    Chu F, Yan J, Dai L L, et al. Effect of rolling cooling process on microstructure and properties of LT-FH32 low temperature steel. Hot Work Technol, 2019, 48(15): 37
    [9]
    肖大恒, 湯偉, 羅登, 等. 超大型液化石油氣船用低溫鋼組織性能. 鋼鐵, 2020, 55(4):82 doi: 10.13228/j.boyuan.issn0449-749x.20190330

    Xiao D H, Tang W, Luo D, et al. Microstructure and properties of low temperature steel for ultra large liquefied petroleum gas carrier. Iron Steel, 2020, 55(4): 82 doi: 10.13228/j.boyuan.issn0449-749x.20190330
    [10]
    劉志遠, 王重君, 蔡兆鎮, 等. 含鈮微合金鋼連鑄坯角部裂紋控制二冷新工藝. 中國冶金, 2018, 28(3):22 doi: 10.13228/j.boyuan.issn1006-9356.20170230

    Liu Z Y, Wang C J, Cai Z Z, et al. New secondary cooling process for transverse corner crack control of Nb micro-alloyed steel slab. China Metall, 2018, 28(3): 22 doi: 10.13228/j.boyuan.issn1006-9356.20170230
    [11]
    卿家勝, 沈厚發, 劉明. 高強耐候鋼YQ450NQR1釩氮微合金化. 鋼鐵, 2017, 52(5):87 doi: 10.13228/j.boyuan.issn0449-749x.20160428

    Qing J S, Shen H F, Liu M. V-N microalloying of high strength weathering steel YQ450NQR1. Iron &Steel, 2017, 52(5): 87 doi: 10.13228/j.boyuan.issn0449-749x.20160428
    [12]
    陳杰, 李紅英, 周文浩, 等. 熱輸入對Q1100鋼焊接接頭低溫韌性及耐蝕性能的影響. 材料研究學報, 2022, 36(8):617

    Chen J, Li H Y, Zhou W H, et al. Effect of heat input on low temperature toughness and corrosion resistance of Q1100 steel welded joints. Chin J Mater Res, 2022, 36(8): 617
    [13]
    王晶, 董俊慧. 焊接工藝對16MnR鋼接頭組織和低溫性能的影響. 熱加工工藝, 2009, 38(11):8 doi: 10.3969/j.issn.1001-3814.2009.11.003

    Wang J, Dong J H. Effect of welding process on microstructure and cryogenic properties of welded joint of 16MnR steel. Hot Work Technol, 2009, 38(11): 8 doi: 10.3969/j.issn.1001-3814.2009.11.003
    [14]
    季益龍, 劉建華, 陳方, 等. F550船板鋼中心偏析遺傳性研究 //“第十屆中國鋼鐵年會”暨“第六屆寶鋼學術年會” 上海, 2015: 663

    Ji Y L, Liu J H, Chen F, et al. Research on centerline segregation heredity of F550 shipbuilding steel // Proceedings of China Iron & Steel Annual Meeting and Annual Academic of BaoSteel. Shanghai, 2015: 663
    [15]
    介瑞華. 120t BOF-LF-RH-Φ300mm CC-CR流程42CrMoA鋼軋材帶狀組織形成分析及改善措施. 特殊鋼, 2021, 42(4):81 doi: 10.3969/j.issn.1003-8620.2021.04.019

    Jie R H. Analysis and improvement measures on band structure formation of 42CrMoA rolled steel with 120t BOF-LF-RH-Φ300 mm CC-CR flowsheet. Special Steel, 2021, 42(4): 81 doi: 10.3969/j.issn.1003-8620.2021.04.019
    [16]
    楊建桃, 田陸, 包燕平. 連鑄坯中心偏析檢測. 連鑄, 2013, 38(4):32

    Yang J T, Tian L, Bao Y P. Test of slabs center segregation. Continuous Cast, 2013, 38(4): 32
    [17]
    Liang J H, Zhao Z Z, Tang D, et al. Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath matrix. Mater Sci Eng A, 2018, 711: 175 doi: 10.1016/j.msea.2017.11.046
    [18]
    翁宇慶, 孔令航, 王國棟, 等. 超細晶鋼: 鋼的組織細化理論與控制技術. 北京: 冶金工業出版社, 2003

    Weng Y Q, Kong L H, Wang G D, et al. Ultrafine Grained Steel: The Refinement Theory and Controlled Technology of Steel. Beijing: Metallurgical Industry Press, 2003
    [19]
    Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction. Microsc Microanal, 2011, 17(3): 316 doi: 10.1017/S1431927611000055
    [20]
    Wang J L, Hong H, Huang A R, et al. New insight into the relationship between grain boundaries and hardness in bainitic/martensitic steels from the crystallographic perspective. Mater Lett, 2022, 308: 131105 doi: 10.1016/j.matlet.2021.131105
    [21]
    Guo F J, Wang X L, Liu W L, et al. The influence of centerline segregation on the mechanical performance and microstructure of X70 pipeline steel. Steel Res Int, 2018, 89(12): 1800407 doi: 10.1002/srin.201800407
    [22]
    Wang J L, Guo F J, Wang Z Q, et al. Influence of centerline segregation on the crystallographic features and mechanical properties of a high-strength low-alloy steel. Mater Lett, 2020, 267: 127512 doi: 10.1016/j.matlet.2020.127512
    [23]
    Yu Y S, Hu B, Gao M L, et al. Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel. Int J Miner Metall Mater, 2021, 28(5): 816 doi: 10.1007/s12613-020-2235-5
    [24]
    王長順, 郭福建, 李廣龍, 等. 中心偏析控制對型鋼低溫韌性的影響. 鋼鐵, 2019, 54(8):202

    Wang C S, Guo F J, Li G L, et al. Influence of central segregation control on low temperature toughness of steel. Iron Steel, 2019, 54(8): 202
    [25]
    紀元, 閔云峰, 李鵬善, 等. 鋼中帶狀組織及其研究現狀. 中國冶金, 2016, 26(4):1

    Ji Y, Min Y F, Li P S, et al. Research status of banding phenomena in steels. China Metall, 2016, 26(4): 1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (388) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164