Citation: | FENG Kai, HE Dong-feng, XU An-jun, ZHAO Hong-bo, LIN Shi-jing. End sulfur content prediction method of molten iron in KR based on Kmeans–BP neural network[J]. Chinese Journal of Engineering, 2023, 45(7): 1187-1193. doi: 10.13374/j.issn2095-9389.2022.05.29.004 |
[1] |
Feng K, Xu A J, He D F, et al. Case-based reasoning method based on mechanistic model correction for predicting endpoint sulphur content of molten iron in KR desulphurization. Ironmaking Steelmaking, 2020, 47(7): 799 doi: 10.1080/03019233.2019.1615307
|
[2] |
Chen W, Wang B X, Chen Y. Prediction for the sulfur content in pig iron of blast furnace by combining artificial neural network with genetic algorithm. Adv Mater Res, 2010, 143-144: 1137 doi: 10.4028/www.scientific.net/AMR.143-144.1137
|
[3] |
張軍紅, 謝安國, 沈峰滿. 基于神經網絡對鐵水硫含量的優化和分析. 材料與冶金學報, 2006, 5(2):86 doi: 10.3969/j.issn.1671-6620.2006.02.002
Zhang J H, Xie A G, Shen F M. Optimization and analysis of sulfur content in hot metal based on neural network. J Mater Metall, 2006, 5(2): 86 doi: 10.3969/j.issn.1671-6620.2006.02.002
|
[4] |
張慧書, 戰東平, 姜周華. 基于改進BP神經網絡的鐵水預處理終點硫含量預報模型. 鋼鐵, 2007, 42(3):30 doi: 10.3321/j.issn:0449-749X.2007.03.008
Zhang H S, Zhan D P, Jiang Z H. Final sulfur content prediction model based on improved BP artificial neural network for hot metal pretreatment. Iron Steel, 2007, 42(3): 30 doi: 10.3321/j.issn:0449-749X.2007.03.008
|
[5] |
Zhou H, Tang Z Y, Wen B J, et al. Application of statistical analysis, Deng's relevancy, and BP neural network for predicting molten iron sulfur in COREX process. Int J Chem React Eng, 2020, 18(12): 20220122
|
[6] |
王煒, 陳畏林, 葉勇, 等. 神經網絡在高爐鐵水硫含量預報中的應用. 鋼鐵, 2006, 41(10):19 doi: 10.3321/j.issn:0449-749X.2006.10.004
Wang W, Chen W L, Ye Y, et al. Application of neural network to predict sulphur content in hot metal. Iron Steel, 2006, 41(10): 19 doi: 10.3321/j.issn:0449-749X.2006.10.004
|
[7] |
方忠強, 孫彥輝. 高堿度精煉渣脫硫分析及硫分配比預測模型. 煉鋼, 2014, 30(1):46 doi: 10.3969/j.issn.1002-1043.2014.01.012
Fang Z Q, Sun Y H. Desulphurization analysis of slag with high basicity and prediction model for sulfur distribution ratio. Steelmaking, 2014, 30(1): 46 doi: 10.3969/j.issn.1002-1043.2014.01.012
|
[8] |
Qiu D, Dai W J, Zhang N. Research on prediction model of end sulfur content for converter smelting. Adv Mater Res, 2014, 1037: 26 doi: 10.4028/www.scientific.net/AMR.1037.26
|
[9] |
Al-Jamimi H A. Prediction of sulfur content in desulfurization process using a fuzzy-logic based model. Solid State Phenom, 2019, 287: 80 doi: 10.4028/www.scientific.net/SSP.287.80
|
[10] |
Zhang G, Liu H C, Li P L, et al. Load prediction based on hybrid model of VMD–mRMR–BPNN–LSSVM. Complexity, 2020, 2020: 6940786
|
[11] |
Liu Y F, Wang Q, Zhang X D, et al. Using ANFIS and BPNN methods to predict the unfrozen water content of saline soil in Western Jilin, China. Symmetry, 2018, 11(1): 16 doi: 10.3390/sym11010016
|
[12] |
Ahmed W, Muhammad K, Siddiqui F I. Predicting calorific value of thar lignite deposit: A comparison between back-propagation neural networks (BPNN), gradient boosting trees (GBT), and multiple linear regression (MLR). Appl Artif Intell, 2020, 34(14): 1124 doi: 10.1080/08839514.2020.1824091
|
[13] |
Liu Y, Li B F. Bayesian hierarchical K-means clustering. Intell Data Anal, 2020, 24(5): 977 doi: 10.3233/IDA-194807
|
[14] |
Geng X Y, Mu Y K, Mao S L, et al. An improved K-means algorithm based on fuzzy metrics. IEEE Access, 8: 217416
|
[15] |
T?rn?uc? C, Gómez-Pérez D, Balcázar J L, et al. Global optimality in k-means clustering. Inf Sci, 2018, 439-440: 79 doi: 10.1016/j.ins.2018.02.001
|
[16] |
Ming Y W, Zhu E, Wang M, et al. Scalable k-means for large-scale clustering. Intell Data Anal, 2019, 23(4): 825 doi: 10.3233/IDA-173795
|
[17] |
Moodi F, Saadatfar H. An improved K-means algorithm for big data. IET Softw, 2022, 16(1): 48 doi: 10.1049/sfw2.12032
|
[18] |
Hu H, Zhang J F, Li T. A novel hybrid decompose-ensemble strategy with a VMD–BPNN approach for daily streamflow estimating. Water Resour Manag, 2021, 35: 15
|
[19] |
Jiang X P, Wang Z T, Zhu H, et al. Hydraulic turbine system identification and predictive control based on GASA–BPNN. Int J Miner Metall Mater, 2021, 28(7): 1240 doi: 10.1007/s12613-021-2290-6
|
[20] |
Lu Y, Xing Y, Li X, et al. A new approach of CMT seam welding deformation forecasting based on GA–BPNN. Frattura ed Integrità Strutturale, 2020, 14(53): 325
|
[21] |
Cai B, Pan G L, Fu F. Prediction of the postfire flexural capacity of RC beam using GA–BPNN machine learning. J Perform Constr Fac, 2020, 34(6): 04020105 doi: 10.1061/(ASCE)CF.1943-5509.0001514
|
[22] |
Sun Y B, Xiao J, Liu H, et al. Deformation prediction based on an adaptive GA–BPNN and the online compensation of a 5-DOF hybrid robot. Ind Robot, 2020, 47(6): 915 doi: 10.1108/IR-01-2020-0016
|
[23] |
Wang D H, Sun J Y, Dong A P, et al. Prediction of core deflection in wax injection for investment casting by using SVM and BPNN. Int J Adv Manuf Tech, 2019, 101(5-8): 2165 doi: 10.1007/s00170-018-3069-4
|
[24] |
Yang Z, Zhou Q, Wu X, et al. Detection of water content in transformer oil using multi frequency ultrasonic with PCA–GA–BPNN. Energies, 2019, 12(7): 1379 doi: 10.3390/en12071379
|
[25] |
Yang X, Zhou Q, Wang J, et al. Predictive control modeling of ADS's MEBT using BPNN to reduce the impact of noise on the control system. Ann Nucl Energy, 2019, 132(10): 576
|
[26] |
Cai B, Sun X, Wang J, et al. Fault detection and diagnostic method of diesel engine by combining rule-based algorithm and BNs/BPNNs. J Manuf Syst, 2020, 57(7): 148
|