Citation: | CHEN Xue-hui, FENG Yan, QIAN Quan. Differential privacy protection random forest algorithm and its application in steel materials[J]. Chinese Journal of Engineering, 2023, 45(7): 1194-1204. doi: 10.13374/j.issn2095-9389.2022.05.29.002 |
[1] |
周水庚, 李豐, 陶宇飛, 等. 面向數據庫應用的隱私保護研究綜述. 計算機學報, 2009, 32(5):847 doi: 10.3724/SP.J.1016.2009.00847
Zhou S G, Li F, Tao Y F, et al. Privacy preservation in database applications: A survey. Chin J Comput, 2009, 32(5): 847 doi: 10.3724/SP.J.1016.2009.00847
|
[2] |
Sweeney L. k-anonymity: A model for protecting privacy. Int J Uncertain Fuzziness Knowl Based Syst, 2002, 10(5): 557 doi: 10.1142/S0218488502001648
|
[3] |
Du W L, Atallah M J. Secure multi-party computation problems and their applications: A review and open problems//Proceedings of the 2001 Workshop on New Security Paradigms. Cloudcroft, 2001: 13
|
[4] |
Konečný J, McMahan H B, Yu F X, et al. Federated learning: Strategies for improving communication efficiency [J/OL]. ArXiv Preprint (2017-10-30) [2022-5-29]. https://arxiv.org/abs/1610.05492
|
[5] |
Dwork C. Differential privacy//Proceedings of the 33rd International Conference on Automata, Languages and Programming. New York, 2006: 1
|
[6] |
Xiong J, Zhang T Y, Shi S Q. Machine learning of mechanical properties of steels. Sci China Technol Sci, 2020, 63(7): 1247 doi: 10.1007/s11431-020-1599-5
|
[7] |
Dai M Y, Hu J M. Field-free spin-orbit torque perpendicular magnetization switching in ultrathin nanostructures. Npj Comput Mater, 2020, 6: 78 doi: 10.1038/s41524-020-0347-0
|
[8] |
Huber L, Hadian R, Grabowski B, et al. A machine learning approach to model solute grain boundary segregation. Npj Comput Mater, 2018, 4: 64 doi: 10.1038/s41524-018-0122-7
|
[9] |
Choudhary K, Garrity K F, Sharma V, et al. High-throughput density functional perturbation theory and machine learning predictions of infrared, piezoelectric, and dielectric responses. Npj Comput Mater, 2020, 6: 64 doi: 10.1038/s41524-020-0337-2
|
[10] |
Bartel C J, Trewartha A, Wang Q, et al. A critical examination of compound stability predictions from machine-learned formation energies. Npj Comput Mater, 2020, 6: 97 doi: 10.1038/s41524-020-00362-y
|
[11] |
唐淑蘭, 孟勇, 王國強, 等. 結合多尺度分割和隨機森林的變質礦物提取. 工程科學學報, 2022, 44(2):170 doi: 10.3321/j.issn.1001-053X.2022.2.bjkjdxxb202202002
Tang S L, Meng Y, Wang G Q, et al. Extraction of metamorphic minerals by multiscale segmentation combined with random forest. Chin J Eng, 2022, 44(2): 170 doi: 10.3321/j.issn.1001-053X.2022.2.bjkjdxxb202202002
|
[12] |
陳亮, 付冬梅. 低合金鋼海水腐蝕監測中的雙率數據處理與建模. 工程科學學報, 2022, 44(1):95 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201009
Chen L, Fu D M. Processing and modeling dual-rate sampled data in seawater corrosion monitoring of low alloy steels. Chin J Eng, 2022, 44(1): 95 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201009
|
[13] |
Sigmund G, Gharasoo M, Hüffer T, et al. Deep learning neural network approach for predicting the sorption of ionizable and polar organic pollutants to a wide range of carbonaceous materials. Environ Sci Technol, 2020, 54(7): 4583 doi: 10.1021/acs.est.9b06287
|
[14] |
Le T D, Noumeir R, Quach H L, et al. Critical temperature prediction for a superconductor: A variational Bayesian neural network approach. IEEE Trans Appl Supercond, 2020, 30(4): 1
|
[15] |
魏孟, 王橋, 葉敏, 等. 基于NARX動態神經網絡的鋰離子電池剩余壽命間接預測. 工程科學學報, 2022, 44(3):380 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203007
Wei M, Wang Q, Ye M, et al. An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network. Chin J Eng, 2022, 44(3): 380 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203007
|
[16] |
De Cock M, Dowsley R, Horst C, et al. Efficient and private scoring of decision trees, support vector machines and logistic regression models based on pre-computation. IEEE Trans Dependable Secure Comput, 2019, 16(2): 217 doi: 10.1109/TDSC.2017.2679189
|
[17] |
Wu Y C, Cai S F, Xiao X K, et al. Privacy preserving vertical federated learning for tree-based models [J/OL]. ArXiv Preprint (2020-08-14) [2020-05-29]. https://arxiv.org/abs/2008.06170
|
[18] |
Liu Y, Liu Y T, Liu Z J, et al. Federated forest. IEEE Trans Big Data, 2022, 8(3): 843 doi: 10.1109/TBDATA.2020.2992755
|
[19] |
Cheng K W, Fan T, Jin Y L, et al. SecureBoost: A lossless federated learning framework. IEEE Intell Syst, 2021, 36(6): 87 doi: 10.1109/MIS.2021.3082561
|
[20] |
Blum A, Dwork C, McSherry F, et al. Practical privacy: The SuLQ framework//Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Baltimore, 2005: 128
|
[21] |
Friedman A, Schuster A. Data mining with differential privacy//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, 2010: 493
|
[22] |
Patil A, Singh S. Differential private random forest//2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Delhi, 2014: 2623
|
[23] |
穆海蓉, 丁麗萍, 宋宇寧, 等. DiffPRFs: 一種面向隨機森林的差分隱私保護算法. 通信學報, 2016, 37(9):175 doi: 10.11959/j.issn.1000-436x.2016169
Mu H R, Ding L P, Song Y N, et al. DiffPRFs: Random forest under differential privacy. J Commun, 2016, 37(9): 175 doi: 10.11959/j.issn.1000-436x.2016169
|
[24] |
Breiman L. Random forests. Mach Learn, 2001, 45(1): 5 doi: 10.1023/A:1010933404324
|
[25] |
Dwork C, McSherry F, Nissim K, et al. Calibrating noise to sensitivity in private data analysis. J Priv Confidentiality, 2017, 7(3): 17 doi: 10.29012/jpc.v7i3.405
|
[26] |
McSherry F, Talwar K. Mechanism design via differential privacy//48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07). Providence, 2007: 94
|
[27] |
Kairouz P, Oh S, Viswanath P. The composition theorem for differential privacy. IEEE Trans Inf Theory, 2017, 63(6): 4037 doi: 10.1109/TIT.2017.2685505
|
[28] |
Agrawal A, Choudhary A. An online tool for predicting fatigue strength of steel alloys based on ensemble data mining. Int J Fatigue, 2018, 113: 389 doi: 10.1016/j.ijfatigue.2018.04.017
|