<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
CHEN Jia-qi, CAO Fei, YOU Jia-qi, YU Sheng-lu, LU Ding-xin, SUN De-si, XU Jian-ping. Adsorption thermodynamics and kinetics of O—butyl—N—isobutyl thionocarbamate on chalcopyrite surfaces[J]. Chinese Journal of Engineering, 2023, 45(8): 1264-1271. doi: 10.13374/j.issn2095-9389.2022.04.28.001
Citation: CHEN Jia-qi, CAO Fei, YOU Jia-qi, YU Sheng-lu, LU Ding-xin, SUN De-si, XU Jian-ping. Adsorption thermodynamics and kinetics of O—butyl—N—isobutyl thionocarbamate on chalcopyrite surfaces[J]. Chinese Journal of Engineering, 2023, 45(8): 1264-1271. doi: 10.13374/j.issn2095-9389.2022.04.28.001

Adsorption thermodynamics and kinetics of O—butyl—N—isobutyl thionocarbamate on chalcopyrite surfaces

doi: 10.13374/j.issn2095-9389.2022.04.28.001
More Information
  • Corresponding author: E-mail: jjyz2001@163.com
  • Received Date: 2022-04-28
    Available Online: 2022-06-07
  • Publish Date: 2023-08-25
  • O—butyl—N—isobutyl thionocarbamate (NBIB) is a novel collector for copper sulfur flotation separation. The adsorption capacity of NBIB was measured using a UV–vis spectrophotometer. The effects of the adsorption temperature, pH value, stirring time, and collector concentration on the adsorption capacity of NBIB on chalcopyrite surfaces, as well as its adsorption thermodynamics and kinetics, were investigated. Results of a pure mineral flotation experiment indicate that NBIB has a high recovery rate for chalcopyrite, strong collection capacity, and little influence by pH. The adsorption capacity of NBIB on a chalcopyrite surface increases with an increase in the collector concentration at 288, 298, and 308 K and pH 6, 9, and 12, respectively. When the equilibrium concentration reaches 0.5×10?4 mol?L?1, the adsorption capacity has a small increase range. At the same pH value, the adsorption capacity increases with an increase in the adsorption temperature. It is speculated that NBIB adsorption on a chalcopyrite surface is an endothermic process. At pH 6 and 9, little difference exists in adsorption capacity, which slightly decreases when pH increases to 12. Meanwhile, the pulp pH value has little effect on the adsorption capacity, which is consistent with the flotation test results. The adsorption capacity data were linearly fitted by Langmuir and Freundlich isotherms, and the Langmuir equation has a better correlation coefficient of the fitting curve. The adsorption process of NBIB on the chalcopyrite surface is more consistent with the Langmuir adsorption model, and it is speculated that the adsorption process may be monolayer adsorption. The parameters of the Langmuir equation are considered based on a thermodynamic formula. The results indicate that the linear fitting results are good, ?G is negative, and ?H and ?S are positive. Therefore, the process of chalcopyrite adsorbing NBIB may be spontaneous, entropy-driven, and endothermic chemical adsorption. Meanwhile, the adsorption capacity of NBIB on the chalcopyrite surface increases with an increase in the adsorption time at temperatures from 288 K to 308 K. The increasing trend of adsorption capacity slows down after the adsorption time reaches 20 min. Moreover, the adsorption capacity increases with increasing temperature. Evidently, the adsorption is an endothermic process, which is consistent with the results of the thermodynamic analysis. The kinetic calculation shows that the correlation coefficients of the second-order reaction fitting curve are greater than those of first-order reaction, indicating that the second-order reaction rate equation has a better linear fitting result. The equilibrium adsorption capacity calculated by the second-order reaction rate equation is closer to the experimental equilibrium adsorption capacity. Therefore, it is speculated that the NBIB adsorption on the chalcopyrite surface conforms to the second-order adsorption kinetic model.

     

  • loading
  • [1]
    Huang Z J, Wang J J, Sun W, et al. Selective flotation of chalcopyrite from pyrite using diphosphonic acid as collector. Miner Eng, 2019, 140: 105890 doi: 10.1016/j.mineng.2019.105890
    [2]
    Liu G Y, Yang X L, Zhong H. Molecular design of flotation collectors: A recent progress. Adv Colloid Interface Sci, 2017, 246: 181 doi: 10.1016/j.cis.2017.05.008
    [3]
    賈云, 鐘宏, 王帥, 等. 捕收劑的分子設計與綠色合成. 中國有色金屬學報, 2020, 30(2):456 doi: 10.11817/j.ysxb.1004.0609.2020-37496

    Jia Y, Zhong H, Wang S, et al. Molecular design and green synthesis of collectors. Chin J Nonferrous Met, 2020, 30(2): 456 doi: 10.11817/j.ysxb.1004.0609.2020-37496
    [4]
    吳海祥, 邵延海, 張鉑華, 等. 低堿度銅硫分離浮選藥劑的研究進展. 礦冶, 2021, 30(4):33 doi: 10.3969/j.issn.1005-7854.2021.04.006

    Wu H X, Shao Y H, Zhang B H, et al. Research progress of flotation reagents for low alkalinity copper-sulfur separation. Min Metall, 2021, 30(4): 33 doi: 10.3969/j.issn.1005-7854.2021.04.006
    [5]
    劉學勇, 韓躍新. 捕收劑烯丙基異丁基硫氨酯在硫化銅礦表面的吸附機理. 金屬礦山, 2018(1):88 doi: 10.19614/j.cnki.jsks.201801017

    Liu X Y, Han Y X. Adsorption mechanism of collector allyl isobutyl thionocarbamate on the surface of copper sulphide. Met Mine, 2018(1): 88 doi: 10.19614/j.cnki.jsks.201801017
    [6]
    Han G, Wen S M, Wang H, et al. Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite. Sep Purif Technol, 2020, 240: 116650 doi: 10.1016/j.seppur.2020.116650
    [7]
    Tian X D, Li X T, Bi P F. Effect of O-isobutyl-N-ethyl thionocarbamates on flotation behavior of porphyry copper ore and its adsorption mechanism. Appl Surf Sci, 2020, 503: 144313 doi: 10.1016/j.apsusc.2019.144313
    [8]
    Huang X P, Huang K H, Jia Y, et al. Investigating the selectivity of a xanthate derivative for the flotation separation of chalcopyrite from pyrite. Chem Eng Sci, 2019, 205: 220 doi: 10.1016/j.ces.2019.04.051
    [9]
    Zhang X R, Lu L, Zhu Y G, et al. Research on the separation of malachite from quartz with S-carboxymethyl-O, O’-dibutyl dithiophosphate chelating collector and its insights into flotation mechanism. Powder Technol, 2020, 366: 130 doi: 10.1016/j.powtec.2020.02.071
    [10]
    Khoso S A, Hu Y H, Lyu F, et al. Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant. J Clean Prod, 2019, 232: 888 doi: 10.1016/j.jclepro.2019.06.008
    [11]
    Yin W Z, Yang B, Fu Y F, et al. Effect of calcium hypochlorite on flotation separation of covellite and pyrite. Powder Technol, 2019, 343: 578 doi: 10.1016/j.powtec.2018.11.048
    [12]
    Liu W B, Liu W G, Zhao Q, et al. Design and flotation performance of a novel hydroxy polyamine surfactant based on hematite reverse flotation desilication system. J Mol Liq, 2020, 301: 112428 doi: 10.1016/j.molliq.2019.112428
    [13]
    王介良, 曹釗, 王建英, 等. 辛基羥肟酸在氟碳鈰礦表面的吸附機理. 中南大學學報(自然科學版), 2019, 50(4):762

    Wang J L, Cao Z, Wang J Y, et al. Adsorption mechanism of octyl hydroxamic acid on bastnaesite surface. J Central South Univ (Sci Technol), 2019, 50(4): 762
    [14]
    劉明寶, 強旭旭, 印萬忠. 水楊羥肟酸在金紅石表面的吸附特性研究. 有色金屬工程, 2018, 8(5):40 doi: 10.3969/j.issn.2095-1744.2018.05.010

    Liu M B, Qiang X X, Yin W Z. Adsorption characteristics of salicylhydroxamic acid(SHA) on rutile surface. Nonferrous Met Eng, 2018, 8(5): 40 doi: 10.3969/j.issn.2095-1744.2018.05.010
    [15]
    孫輝, 張志勇, 王一鳴, 等. 3-戊基-4-氨基-1, 2, 4-三唑-5-硫酮浮選分離黃銅礦與閃鋅礦及其機理. 礦冶工程, 2021, 41(3):51 doi: 10.3969/j.issn.0253-6099.2021.03.012

    Sun H, Zhang Z Y, Wang Y M, et al. Flotation separation of chalcopyrite from sphalerite with 3-amyl-4-amino-1, 2, 4-triazole-5-thinoe and its underlying mechanism. Min Metall Eng, 2021, 41(3): 51 doi: 10.3969/j.issn.0253-6099.2021.03.012
    [16]
    張崇輝, 何廷樹, 李慧, 等. 紫外光譜法研究黃藥在黃銅礦表面的吸附熱力學與動力學. 光譜學與光譜分析, 2019, 39(10):3172

    Zhang C H, He T S, Li H, et al. Adsorption thermodynamics and kinetics of xanthate at chalcopyrite surface based on ultraviolet spectrophotometry. Spectrosc Spectr Anal, 2019, 39(10): 3172
    [17]
    劉微, 劉廣義, 肖靜晶, 等. N-異丁氧羰基硫脲浮選黃銅礦的機理. 中國有色金屬學報, 2017, 27(1):128 doi: 10.19476/j.ysxb.1004.0609.2017.01.017

    Liu W, Liu G Y, Xiao J J, et al. Mechanism of N-isobutoxycarbonyl thiourea (iBCTU) for chalcopyrite flotation. Chin J Nonferrous Met, 2017, 27(1): 128 doi: 10.19476/j.ysxb.1004.0609.2017.01.017
    [18]
    牛曉雪, 劉廣義, 胡哲, 等. 黃銅礦吸附5-戊基-1, 2, 4-三唑-3-硫酮的熱力學及機理. 中南大學學報(自然科學版), 2018, 49(6):1315

    Niu X X, Liu G Y, Hu Z, et al. Thermodynamics and mechanism of 5-pentyl-1, 2, 4-triazole-3-thione adsorption on chalcopyrite surfaces. J Central South Univ Sci Technol, 2018, 49(6): 1315
    [19]
    Sun Q Y, Yin W Z, Cao S H, et al. Adsorption kinetics and thermodynamics of sodium butyl xanthate onto bornite in flotation. J Central South Univ, 2019, 26(11): 2998 doi: 10.1007/s11771-019-4231-3
    [20]
    曲肖彥, 劉廣義, 劉勝, 等. 3-己基-4-氨基-1, 2, 4-三唑-5-硫酮在黃銅礦表面的吸附動力學與熱力學. 中國有色金屬學報, 2015, 25(7):2006

    Qu X Y, Liu G Y, Liu S, et al. Adsorption kinetics and thermodynamics of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione on surface of chalcopyrite. Chin J Nonferrous Met, 2015, 25(7): 2006
    [21]
    曹永丹, 曹釗, 張亞輝, 等. Cu(Ⅱ)、Ni(Ⅱ)離子在蛇紋石表面的吸附及對其浮選的影響. 工程科學學報, 2016, 38(4):461

    Cao Y D, Cao Z, Zhang Y H, et al. Effect of Cu(II) and Ni(II) adsorption on serpentine flotation. Chin J Eng, 2016, 38(4): 461
    [22]
    劉廣義, 張慧麗, 任恒, 等. N, N’-二異丙氧基丙基-N”, N’’’-氧二乙氧羰基硫脲在黃銅礦表面的吸附動力學和熱力學特性. 中南大學學報(自然科學版), 2015, 46(5):1588

    Liu G Y, Zhang H L, Ren H, et al. Adsorption kinetics and thermodynamics of N, N’-dipropoxypropyl-N”, N’’’-oxydiethylenedicarbonyl bis(thiourea) with chalcopyrite. J Central South Univ Sci Technol, 2015, 46(5): 1588
    [23]
    寇玨, 楊葆華, 徐世紅, 等. 十二烷基磺酸鈉在赤鐵礦表面吸附動力學. 工程科學學報, 2016, 38(10):1359

    Kou J, Yang B H, Xu S H, et al. Adsorption kinetics of sodium dodecyl sulfonate onto hematite. Chin J Eng, 2016, 38(10): 1359
    [24]
    劉明寶, 魚博, 印萬忠. 礦漿pH值對含苯環螯合捕收劑在金紅石表面吸附速率的影響. 過程工程學報, 2018, 18(2):399 doi: 10.12034/j.issn.1009-606X.217319

    Liu M B, Yu B, Yin W Z. Effects of slurry pH on adsorption rate of chelating collectors containing benzene ring onto rutile surface. Chin J Process Eng, 2018, 18(2): 399 doi: 10.12034/j.issn.1009-606X.217319
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (395) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164