Citation: | Lü Chao, YIN Hong-xin, LIU Yan-long, CHEN Xu-xin, SUN Ming-he. Visualization study on preparation of CeO2 by pyrolysis method via microwave heating[J]. Chinese Journal of Engineering, 2023, 45(7): 1238-1245. doi: 10.13374/j.issn2095-9389.2022.04.20.004 |
[1] |
唐紅梅, 李琴, 黃振雄, 等. 二氧化鈰納米結構的制備方法研究進展. 能源研究與管理, 2021(3):18 doi: 10.16056/j.2096-7705.2021.03.005
Tang H M, Li Q, Huang Z X, et al. Fabricate methodology research progress of CeO2 with nanostructures. Energy Res Manag, 2021(3): 18 doi: 10.16056/j.2096-7705.2021.03.005
|
[2] |
吳文遠, 薛首峰, 邊雪, 等. 超細氧化鈰制備工藝研究. 東北大學學報(自然科學版), 2015, 36(6):800 doi: 10.3969/j.issn.1005-3026.2015.06.010
Wu W Y, Xue S F, Bian X, et al. Study on the preparation process for CeO2 superfine powder. J Northeast Univ Nat Sci, 2015, 36(6): 800 doi: 10.3969/j.issn.1005-3026.2015.06.010
|
[3] |
Mohan S, Dinesha P. Performance and emissions of biodiesel engine with hydrogen peroxide emulsification and cerium oxide (CeO2) nanoparticle additives. Fuel, 2022, 319: 123872 doi: 10.1016/j.fuel.2022.123872
|
[4] |
Dinesha P, Kumar S, Rosen M A. Effects of particle size of cerium oxide nanoparticles on the combustion behavior and exhaust emissions of a diesel engine powered by biodiesel/diesel blend. Biofuel Res J, 2021, 8(2): 1374 doi: 10.18331/BRJ2021.8.2.3
|
[5] |
劉潤澤, 周芬, 王青春, 等. 固體氧化物燃料電池用CeO2基電解質的研究進展. 材料導報, 2021, 35(增刊 1):29
Liu R Z, Zhou F, Wang Q C, et al. Research progress of CeO2-based electrolytes for solid oxide fuel cells. Mater Rep, 2021, 35(Suppl 1): 29
|
[6] |
Venkataramana K, Madhuri C, Madhusudan C, et al. Influence of La3+, Sm3+ and Dy3+ dopants on ceria solid electrolytes for IT–SOFCs. Mater Sci Semicond Process, 2022, 142: 106495 doi: 10.1016/j.mssp.2022.106495
|
[7] |
龔玉玲, 崔宸, 武美萍. 納米CeO2含量對Ni60A涂層組織及耐腐蝕性能的影響. 激光與光電子學進展, 2021, 58(21):190
Gong Y L, Cui C, Wu M P. Effect of Nano-CeO2 content on microstructure and corrosion resistance of Ni60A coating. Laser Optoelectron Progr, 2021, 58(21): 190
|
[8] |
徐歡歡, 林晨, 劉佳, 等. CeO2加入含量對激光熔覆WC增強鎳基合金涂層組織與性能的影響. 機械工程材料, 2021, 45(7):27 doi: 10.11973/jxgccl202107006
Xu H H, Lin C, Liu J, et al. Effect of CeO2 adding content on microstructure and properties of laser cladding WC reinforced nickel-based alloy coating. Mater Mech Eng, 2021, 45(7): 27 doi: 10.11973/jxgccl202107006
|
[9] |
張玉濤. 氧化鈰基納米酶的制備及其在腫瘤治療方面的應用研究[學位論文]. 南京: 南京郵電大學, 2021
Zhang Y T. Ceria Based Nanozymes: Synthesis and Tumor Therapy Application [Dissertation]. Nanjing: Nanjing University of Posts and Telecommunications, 2021
|
[10] |
Lu Y Q. Coagulation disorders following an accidental ingestion of cerium dioxide nanoparticles. Environ Toxicol Pharmacol, 2021, 82: 103560 doi: 10.1016/j.etap.2020.103560
|
[11] |
周國永, 曾一文, 黃志強, 等. 碳酸氫銨?氨水?草酸共沉淀法制備微米稀土CeO2工藝的研究. 化工新型材料, 2012, 40(9):138 doi: 10.3969/j.issn.1006-3536.2012.09.046
Zhou G Y, Zeng Y W, Huang Z Q, et al. Study on preparation of micrometer ceria used ammonium bicarbonate-ammonium hydroxide-oxalic acid by co-precipitation method. New Chem Mater, 2012, 40(9): 138 doi: 10.3969/j.issn.1006-3536.2012.09.046
|
[12] |
朱少敏, 邱介山, 姜玉玲. 離子交換均勻沉淀法合成納米CeO2研究. 大連理工大學學報, 2010, 50(2):167 doi: 10.7511/dllgxb201002003
Zhu S M, Qiu J S, Jiang Y L. Preparation of CeO2 nanoparticles by ion exchange homogenous precipitation method. J Dalian Univ Technol, 2010, 50(2): 167 doi: 10.7511/dllgxb201002003
|
[13] |
王芬, 楊彥青, 薛緒平. 微波輔助溶膠?凝膠法制備CeO2粉體及其生長機制研究. 陜西科技大學學報(自然科學版), 2013, 31(3):33
Wang F, Yang Y Q, Xue X P. Preparation and growth mechanism of CeO2 particles with controlled morphology via microwave assisted sol-gel method. J Shaanxi Univ Sci Technol Nat Sci, 2013, 31(3): 33
|
[14] |
Pinar Go¨kdemir F, Evrim Saatci A, O¨zdemir O, et al. Structural, optical and electrochromic properties of cerium dioxide thin films prepared by sol-gel dip coating method. Mater Sci Semicond Process, 2015, 38: 300 doi: 10.1016/j.mssp.2014.08.037
|
[15] |
劉志強, 梁振鋒, 李杏英. 碳銨沉淀法制備納米氧化鈰的研究. 稀土, 2006, 27(5):11 doi: 10.3969/j.issn.1004-0277.2006.05.003
Liu Z Q, Liang Z F, Li X Y. Synthesis of nanometer cerium oxide by precipitation with ammonium bicarbonate. Chin Rare Earths, 2006, 27(5): 11 doi: 10.3969/j.issn.1004-0277.2006.05.003
|
[16] |
楊國勝, 邊雪, 崔凌霄, 等. 氯化鈰溶液噴霧焙燒制備納米氧化鈰實心粉體的研究. 稀土, 2017, 38(1):72
Yang G S, Bian X, Cui L X, et al. Study on preparation of nano cerium oxide powder by spray roasting of cerium chloride solution. Chin Rare Earths, 2017, 38(1): 72
|
[17] |
Wen Y M, Shi Z Y, Wang S L, et al. Pyrolysis of raw and anaerobically digested organic fractions of municipal solid waste: Kinetics, thermodynamics, and product characterization. Chem Eng J, 2021, 415: 129064 doi: 10.1016/j.cej.2021.129064
|
[18] |
Wen Y M, Wang S L, Mu W Z, et al. Pyrolysis performance of peat moss: A simultaneous in-situ thermal analysis and bench-scale experimental study. Fuel, 2020, 277: 118173 doi: 10.1016/j.fuel.2020.118173
|
[19] |
劉曉輝. 氯化鈰溶液熱解制備氧化鈰的研究[學位論文]. 沈陽: 東北大學, 2011
Liu X H. Study on the Cerium Oxide Prepared by Pyrolysis of Cerium Chloride Solution [Dissertation]. Shenyang: Northeastern University, 2011
|
[20] |
李蕊, 夏仡, 許磊, 等. 微波水熱法快速合成氧化鋅納米棒及其光催化性能. 工程科學學報, 2020, 42(1):78
Li R, Xia Y, Xu L, et al. Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance. Chin J Eng, 2020, 42(1): 78
|
[21] |
Wang F, Zhu H B, Li Y Y, et al. Microwave heating mechanism and self-healing performance of scrap tire pyrolysis carbon black modified bitumen. Constr Build Mater, 2022, 341: 127873 doi: 10.1016/j.conbuildmat.2022.127873
|
[22] |
Wang Z H, Bai E, Huang H, et al. Study on the electromagnetic property and microwave heating efficiency of concrete with magnetite aggregate. Constr Buid Mater, 2022, 342: 128080 doi: 10.1016/j.conbuildmat.2022.128080
|
[23] |
Fia A Z, Amorim J. Heating of biomass in microwave household oven - A numerical study. Energy, 2021, 218: 119472 doi: 10.1016/j.energy.2020.119472
|
[24] |
Lv C, Yin H X, Liu Y L, et al. Preparation of cerium oxide via microwave heating: research on effect of temperature field on particles. Crystals, 2022, 12(6): 843 doi: 10.3390/cryst12060843
|
[25] |
歐陽成, 臧兵, 陳龍. 在微波模式下制備超細氧化鈰. 世界有色金屬, 2021(20):111 doi: 10.3969/j.issn.1002-5065.2021.20.050
Ouyang C, Zang B, Chen L. Preparation of ultrafine cerium oxide in microwave mode. World Nonferrous Met, 2021(20): 111 doi: 10.3969/j.issn.1002-5065.2021.20.050
|
[26] |
陳津, 郝赳赳, 王晨亮, 等. 微波加熱內配碳酸鈣高碳鉻鐵粉固相脫碳. 北京科技大學學報, 2014, 36(12):1626 doi: 10.13374/j.issn1001-053x.2014.12.009
Chen J, Hao J J, Wang C L, et al. Solid-phase decarburization of high-carbon ferrochrome powders containing calcium carbonate by microwave heating. J Univ Sci Technol Beijing, 2014, 36(12): 1626 doi: 10.13374/j.issn1001-053x.2014.12.009
|
[27] |
陳浩. 微波熱解制備氧化鋯納米粉體的工藝及機理研究[學位論文]. 鄭州: 鄭州大學, 2014
Chen H. Study on Preparation and Mechanism of Yttria-Stabilized Zirconia Nanosized Powder by Microwave Pyrolysis [Dissertation]. Zhengzhou: Zhengzhou University, 2014
|
[28] |
金銳. 射流反應在稀土化合物制備中的應用基礎研究[學位論文]. 沈陽: 東北大學, 2015
Jin R. Practical Basic Research on Application of Jet Reaction in the Preparation of Rare Earth Compounds [Dissertation]. Shenyang: Northeastern University, 2015
|
[29] |
Zhu J Y, Yi L P, Yang Z Z, et al. Three-dimensional numerical simulation on the thermal response of oil shale subjected to microwave heating. Chem Eng J, 2021, 407: 127197 doi: 10.1016/j.cej.2020.127197
|