Citation: | LI Jia-ming, JIAO Ming-zhi, QIAN Chen. Simulation and performance study of low-power magnetron sputtered ZnO methane sensor[J]. Chinese Journal of Engineering, 2023, 45(6): 987-994. doi: 10.13374/j.issn2095-9389.2022.04.10.002 |
[1] |
王曉蕾, 姬治崗, 謝怡婷, 等. 采煤工作面瓦斯涌出量預測技術現狀及發展趨勢. 科學技術與工程, 2019, 19(33):1 doi: 10.3969/j.issn.1671-1815.2019.33.001
Wang X L, Ji Z G, Xie Y T, et al. Present situation and development trend of gas emission prediction technology in coal face. Sci Technol Eng, 2019, 19(33): 1 doi: 10.3969/j.issn.1671-1815.2019.33.001
|
[2] |
Zhang T, Zhang Y J, Chang Y R, et al. Methodology of methane emission accounting in petrochemical and chemical industries of China. IOP Conf Ser Earth Environ Sci, 2019, 398(1): 012011 doi: 10.1088/1755-1315/398/1/012011
|
[3] |
Jiao M Z. Microfabricated Gas Sensors Based on Hydrothermally Grown 1-D ZnO Nanostructures [Dissertation]. Uppsala: Uppsala University, 2017
|
[4] |
Ahmad Y H, Mohamed A T, Al-qaradawi S Y. Exploring halloysite nanotubes as catalyst support for methane combustion: influence of support pretreatment. Appl CIay Sci, 2021, 201: 105956
|
[5] |
Sha M L, Ma X H, Li N, et al. Dynamical properties of a room temperature ionic liquid: Using molecular dynamics simulations to implement a dynamic ion cage model. J Chem Phys, 2019, 151(15): 154502 doi: 10.1063/1.5126231
|
[6] |
Mirzaei A, Leonardi S G, Neri G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram Int, 2016, 42(14): 15119 doi: 10.1016/j.ceramint.2016.06.145
|
[7] |
宗肖航. 基于半導體金屬氧化物納米材料的氣體傳感器研究[學位論文]. 沈陽: 遼寧大學, 2021
Zong X H. Research on Gas Sensor Based on Semiconductor Metal Oxide Nanomaterials [Dissertation]. Shenyang: Liaoning University, 2021
|
[8] |
Wang Y, Sun X Y, Cao J L. Enhanced methane sensing performance of Ag modified In2O3 microspheres. J Alloys Compd, 2022, 895: 162557 doi: 10.1016/j.jallcom.2021.162557
|
[9] |
武一, 苑麗靜, 花中秋, 等. MOS型氣體傳感器加熱板的結構優化. 儀表技術與傳感器, 2019(10):12 doi: 10.3969/j.issn.1002-1841.2019.10.004
Wu Y, Yuan L J, Hua Z Q, et al. Structure optimization of heating plate for MOS gas sensor. Instrum Tech Sens, 2019(10): 12 doi: 10.3969/j.issn.1002-1841.2019.10.004
|
[10] |
王海波. 低功耗甲烷傳感器研究進展. 工礦自動化, 2021, 47(5):16
Wang H B. Research progress of low power methane sensor. Ind Mine Autom, 2021, 47(5): 16
|
[11] |
Guo L F, Xu L, Xu Z K, et al. Design and fabrication of micro-nano fusion gas sensor based on two-beam micro-hotplatform. Microsyst Technol, 2017, 23(7): 2699 doi: 10.1007/s00542-016-3091-0
|
[12] |
Dong S L, Duan S H, Yang Q, et al. MEMS-based smart gas metering for Internet of Things. IEEE Internet Things J, 2017, 4(5): 1296 doi: 10.1109/JIOT.2017.2676678
|
[13] |
謝東成. MEMS MOS氣體傳感器的低功耗及陣列化研究[學位論文]. 合肥: 中國科學技術大學, 2021
Xie D C. Study on Low Power Consumption and Array of MEMS MOS Gas Sensors [Dissertation]. Hefei: University of Science and Technology of China, 2021
|
[14] |
Peng S F, Xie D C, Wang J, et al. Integration of SnO2 nanoparticles with micro-hot platform for low-power-consumption gas sensors. Sens Mater, 2018, 30(11): 2679
|
[15] |
Wang Y, Meng X N, Cao J L. Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J Hazard Mater, 2020, 381: 120944 doi: 10.1016/j.jhazmat.2019.120944
|
[16] |
Yu J, Tang Z A, Yan G Z, et al. An experimental study on micro-gas sensors with strip shape tin oxide thin films. Sens Actuat B Chem, 2009, 139(2): 346 doi: 10.1016/j.snb.2009.03.033
|
[17] |
Bhattacharyya P, Basu P K, Mondal B, et al. A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectron Reliab, 2008, 48(11-12): 1772 doi: 10.1016/j.microrel.2008.07.063
|
[18] |
Andio M A, Browning P N, Morris P A, et al. Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms. Sens Actuat B Chem, 2012, 165(1): 13 doi: 10.1016/j.snb.2011.12.045
|
[19] |
Marasso S L, Tommasi A, Perrone D, et al. A new method to integrate ZnO nano-tetrapods on MEMS micro-hotplates for large scale gas sensor production. Nanotechnology, 2016, 27(38): 385503 doi: 10.1088/0957-4484/27/38/385503
|
[20] |
Zhang W S, Yuan T W, Wang X H, et al. Coal mine gases sensors with dual selectivity at variable temperatures based on a W18O49 ultra-fine nanowires/Pd@Au bimetallic nanoparticles composite. Sens Actuat B Chem, 2022, 354: 131004 doi: 10.1016/j.snb.2021.131004
|
[21] |
Yuan Z Y, Yang F, Meng F L, et al. Research of low-power MEMS-based micro hotplates gas sensor: A review. IEEE Sens J, 2021, 21(17): 18368 doi: 10.1109/JSEN.2021.3088440
|
[22] |
Arun K, Lekshmi M S, Suja K J. Design and simulation of ZnO based acetone gas sensor using COMSOL Multiphysics // Proceedings of 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). Noida, 2020: 659
|
[23] |
吳鵬舉, 劉文強, 楊瑩麗, 等. 磁控濺射制備ZnO/p-Si多孔納米薄膜異質結及其室溫氣敏特性. 電子元件與材料, 2021, 40(12):1184
Wu PJ, Liu WQ, Yang YL, et al. Room temperature gas sensing properties of ZnO/p-Si porous nano-film heterojunction prepared by magnetron sputtering. Electron Compon Mater, 2021, 40(12): 1184
|
[24] |
He Y, Sun B Y, Jiang L, et al. Effect of Ag doping on SnO2 sensing for detecting H2S: A first-principles study. Vacuum, 2021, 194: 110587 doi: 10.1016/j.vacuum.2021.110587
|
[25] |
Jiao M Z, Chen X Y, Hu K X, et al. Recent developments of nanomaterials-based conductive type methane sensors. Rare Met, 2021, 40(6): 1515 doi: 10.1007/s12598-020-01679-9
|
[26] |
Yang Y Q, Wang X D, Yi G Y, et al. Hydrothermally synthesized ZnO hierarchical structure for lower concentration methane sensing. Mater Lett, 2019, 254: 242 doi: 10.1016/j.matlet.2019.07.081
|
[27] |
Wang Y, Meng X N, Yao, M X, et al. Enhanced CH4 sensing properties of Pd modified ZnO nanosheets. Ceram Int, 2019, 45(10): 13150 doi: 10.1016/j.ceramint.2019.03.250
|
[28] |
Li X J, Li Y W, Sun G, et al. Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials, 2019, 9(5): 724 doi: 10.3390/nano9050724
|