<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 6
May  2023
Turn off MathJax
Article Contents
ZHU Wei-yao, CHEN Zhen, SHANG Xin-chun. Multiphysical field coupling in unconventional oil and gas reservoirs[J]. Chinese Journal of Engineering, 2023, 45(6): 1045-1056. doi: 10.13374/j.issn2095-9389.2022.03.29.002
Citation: ZHU Wei-yao, CHEN Zhen, SHANG Xin-chun. Multiphysical field coupling in unconventional oil and gas reservoirs[J]. Chinese Journal of Engineering, 2023, 45(6): 1045-1056. doi: 10.13374/j.issn2095-9389.2022.03.29.002

Multiphysical field coupling in unconventional oil and gas reservoirs

doi: 10.13374/j.issn2095-9389.2022.03.29.002
More Information
  • Corresponding author: E-mail: weiyaook@sina.com
  • Received Date: 2022-03-29
    Available Online: 2022-07-27
  • Publish Date: 2023-05-31
  • Research in the field of oil and gas development has focused on the production of unconventional reservoirs all over the world. Unconventional oil and gas reservoirs have poor flow conditions, and the interaction of flow, stress, and temperature fields is very complex. Therefore, multiphysical field coupling is essential. The previous application of multiphysical field coupling theory has defects such as oversimplification and inadequate adaptability. Furthermore, the lack of adaptive production practices and effective development plans limits large-scale and efficient development, and there is an urgent necessity to investigate the adaptive multiphysical field coupling theory. Currently, the core rheology in fluid–solid coupling settings can often be measured by a triaxial test system under high temperature and pressure conditions combined with flow experiments. Moreover, the changes in pores and fractures can be tested by micro-CT and SEM. In addition, adsorption is considered an exothermic process, and desorption is deemed a heat-absorbing process, so the reservoir temperature decreases at the location where desorption occurs. Therefore, the production of unconventional oil and gas triggers a series of interactions. As the fluid flows into the wellbore through the fractures, the pressure drop increases the effective stress, decreasing the average pore radius and altering the inherent permeability. Moreover, the change of pressure causes a variation in the micro-flow effect, significantly impacting the apparent permeability, and the heat variation during desorption and adsorption also changes the flow condition as well as the physical properties of the fluid. As a result, these physical fields are closely related. A series of fully coupled partial differential equations are necessary to define the production process by modeling the dynamic porosity and permeability in various flow sectors to distinguish the interactions between different zones and physical fields. These complex interactions generally need to be solved by numerical methods. Thus, a simulator is needed that satisfies the accuracy requirements to match the actual situation. Moreover, adaptability to the decoupling process and acceptable speed requires research for high-performance computing solutions that can perform distributed or cloud computing for a large-scale unconventional reservoir simulation. Future research is necessary for laboratory measurements under realistic stress and temperature environmental conditions of the formation and hydrocarbon adsorption experiments. There should be further understanding of scientific issues such as the plastic strain of the porous rocks, changing stress environment after refracturing, and mixed hydrocarbon transport models with varying stress and temperature. This article further clarifies the dynamics and determines effective production methods of unconventional reservoirs in China to promote the development of flow mechanics.

     

  • loading
  • [1]
    Kalam S, Afagwu C, Jaberi J A, et al. A review on non-aqueous fracturing techniques in unconventional reservoirs. J Nat Gas Sci Eng, 2021, 95: 104223 doi: 10.1016/j.jngse.2021.104223
    [2]
    Nikolaev M Y, Kazak A V. Liquid saturation evaluation in organic-rich unconventional reservoirs: A comprehensive review. Earth Sci Rev, 2019, 194: 327 doi: 10.1016/j.earscirev.2019.05.012
    [3]
    He J M, Li X, Yin C, et al. Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale. Energy, 2020, 191: 116449 doi: 10.1016/j.energy.2019.116449
    [4]
    Li W, Liu J S, Zeng J, et al. A fully coupled multidomain and multiphysics model for evaluation of shale gas extraction. Fuel, 2020, 278: 118214 doi: 10.1016/j.fuel.2020.118214
    [5]
    Hudson J A, Stephansson O, Andersson J, et al. Coupled T-H-M issues relating to radioactive waste repository design and performance. Int J Rock Mech Min Sci, 2001, 38(1): 143 doi: 10.1016/S1365-1609(00)00070-8
    [6]
    Wu K L, Chen Z X, Li X F, et al. Flow behavior of gas confined in nanoporous shale at high pressure: Real gas effect. Fuel, 2017, 205: 173 doi: 10.1016/j.fuel.2017.05.055
    [7]
    Wang S, Shi J T, Wang K, et al. New coupled apparent permeability models for gas transport in inorganic nanopores of shale reservoirs considering multiple effects. Energy Fuels, 2017, 31(12): 13545 doi: 10.1021/acs.energyfuels.7b02948
    [8]
    Fan X, Li G S, Shah S N, et al. Analysis of a fully coupled gas flow and deformation process in fractured shale gas reservoirs. J Nat Gas Sci Eng, 2015, 27: 901 doi: 10.1016/j.jngse.2015.09.040
    [9]
    朱維耀, 陳震, 宋智勇, 等. 中國頁巖氣開發理論與技術研究進展. 工程科學學報, 2021, 43(10):1397

    Zhu W Y, Chen Z, Song Z Y, et al. Research progress in theories and technologies of shale gas development in China. Chin J Eng, 2021, 43(10): 1397
    [10]
    Wang J, Liu H Q, Wang L, et al. Apparent permeability for gas transport in nanopores of organic shale reservoirs including multiple effects. Int J Coal Geol, 2015, 152: 50 doi: 10.1016/j.coal.2015.10.004
    [11]
    Chen D, Pan Z J, Ye Z H. Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights. Fuel, 2015, 139: 383 doi: 10.1016/j.fuel.2014.09.018
    [12]
    Mi L D, Jiang H Q, Cao Y, et al. Comprehensive apparent permeability model coupled shale gas transfer mechanisms in natural fractures and matrix. J Pet Sci Eng, 2019, 172: 878 doi: 10.1016/j.petrol.2018.08.080
    [13]
    Cui G L, Liu J S, Wei M Y, et al. Evolution of permeability during the process of shale gas extraction. J Nat Gas Sci Eng, 2018, 49: 94 doi: 10.1016/j.jngse.2017.10.018
    [14]
    Akkutlu I Y, Fathi E. Multiscale gas transport in shales with local kerogen heterogeneities. SPE J, 2012, 17(4): 1002 doi: 10.2118/146422-PA
    [15]
    唐帥, 朱維耀, 張金川. 中牟區塊過渡相頁巖氣藏產能分析及壓裂參數優選. 工程科學學報, 2020, 42(12):1573

    Tang S, Zhu W Y, Zhang J C. Production analysis and fracturing parameter optimization of shale gas from Zhongmou Block in southern North China Basin. Chin J Eng, 2020, 42(12): 1573
    [16]
    Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull, 2009, 93(3): 329 doi: 10.1306/10240808059
    [17]
    Clarkson C R, Solano N, Bustin R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 2013, 103: 606 doi: 10.1016/j.fuel.2012.06.119
    [18]
    Yuan B, Su Y L, Moghanloo R G, et al. A new analytical multi-linear solution for gas flow toward fractured horizontal wells with different fracture intensity. J Nat Gas Sci Eng, 2015, 23: 227 doi: 10.1016/j.jngse.2015.01.045
    [19]
    朱維耀, 李華, 鄧慶軍, 等. 多孔介質細觀流動理論研究進展. 工程科學學報, 2022, 44(5):951 doi: 10.3321/j.issn.1001-053X.2022.5.bjkjdxxb202205014

    Zhu W Y, Li H, Deng Q J, et al. Review on mesoscopic flow theory in porous media. Chin J Eng, 2022, 44(5): 951 doi: 10.3321/j.issn.1001-053X.2022.5.bjkjdxxb202205014
    [20]
    Wang L, Wang S H, Zhang R L, et al. Review of multi-scale and multi-physical simulation technologies for shale and tight gas reservoirs. J Nat Gas Sci Eng, 2017, 37: 560 doi: 10.1016/j.jngse.2016.11.051
    [21]
    Teklu T W, Li X P, Zhou Z, et al. Experimental investigation on permeability and porosity hysteresis of tight formations. SPE J, 2018, 23(3): 672 doi: 10.2118/180226-PA
    [22]
    Ping C, Wen Y D, Wang Y X, et al. Study on nonlinear damage creep constitutive model for high-stress soft rock. Environ Earth Sci, 2016, 75(10): 900 doi: 10.1007/s12665-016-5699-x
    [23]
    Dong J J, Hsu J Y, Wu W J, et al. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. Int J Rock Mech Min Sci, 2010, 47(7): 1141 doi: 10.1016/j.ijrmms.2010.06.019
    [24]
    Tinni A, Fathi E, Agarwal R, et al. Shale Permeability Measurements on Plugs and Crushed Samples//SPE Canadian Unconventional Resources Conference. Alberta, 2012
    [25]
    Heller R, Vermylen J, Zoback M. Experimental investigation of matrix permeability of gas shales. AAPG Bull, 2014, 98(5): 975 doi: 10.1306/09231313023
    [26]
    Wang H L, Xu W Y, Zuo J. Compact rock material gas permeability properties. Phys B:Condens Matter, 2014, 449: 10 doi: 10.1016/j.physb.2014.04.049
    [27]
    Ghanizadeh A, Bhowmik S, Haeri-Ardakani O, et al. A comparison of shale permeability coefficients derived using multiple non-steady-state measurement techniques: Examples from the Duvernay Formation, Alberta (Canada). Fuel, 2015, 140: 371 doi: 10.1016/j.fuel.2014.09.073
    [28]
    Zhong X Y, Zhu Y S, Liu L P, et al. The characteristics and influencing factors of permeability stress sensitivity of tight sandstone reservoirs. J Pet Sci Eng, 2020, 191: 107221 doi: 10.1016/j.petrol.2020.107221
    [29]
    Curtis J B. Fractured shale-gas systems. AAPG Bull, 2002, 86(11): 1921
    [30]
    Chen T Y, Feng X T, Pan Z J. Experimental study of swelling of organic rich shale in methane. Int J Coal Geol, 2015, 150-151: 64 doi: 10.1016/j.coal.2015.08.001
    [31]
    Cao P, Liu J, Leong Y K. Combined impact of flow regimes and effective stress on the evolution of shale apparent permeability. J Unconv Oil Gas Resour, 2016, 14: 32 doi: 10.1016/j.juogr.2016.01.004
    [32]
    Yu J H, Shang X C, Wu P F. Experimental study and theoretical analysis on shale strength. Sci Sin Technol, 2016, 46(2): 135 doi: 10.1360/N092016-00007
    [33]
    Bera A, Kumar S, Foroozesh J, et al. Multiphysics gas transport in nanoporous unconventional reservoirs: Challenges of mathematical modelling. J Nat Gas Sci Eng, 2022, 103(3): 104649
    [34]
    Ghaednia H, Pope S A, Jackson R L, et al. A comprehensive study of the elasto-plastic contact of a sphere and a flat. Tribol Int, 2016, 93: 78 doi: 10.1016/j.triboint.2015.09.005
    [35]
    吳順川, 孫偉, 成子橋. 不同荷載條件下低孔隙率砂巖巴西劈裂試驗的聲發射特性. 工程科學學報, 2020, 42(8):988

    Wu S C, Sun W, Cheng Z Q. Acoustic emission characteristics of Brazilian test for low-porosity sandstone under different load conditions. Chin J Eng, 2020, 42(8): 988
    [36]
    Lyu Q, Shi J D, Gamage R P. Effects of testing method, lithology and fluid-rock interactions on shale permeability: A review of laboratory measurements. J Nat Gas Sci Eng, 2020, 78: 103302 doi: 10.1016/j.jngse.2020.103302
    [37]
    Feng R M, Liu J, Bernhardt-Barry M L, et al. Transverse permeability measurements of gas shales under replicated in-situ flow conditions: Mathematical modeling and laboratory testing. J Nat Gas Sci Eng, 2021, 95: 104159 doi: 10.1016/j.jngse.2021.104159
    [38]
    Pan L, Xiao X M, Tian H, et al. Geological models of gas in place of the Longmaxi shale in Southeast Chongqing, South China. Mar Pet Geol, 2016, 73: 433 doi: 10.1016/j.marpetgeo.2016.03.018
    [39]
    Rogala A, Bernaciak M, Krzysiek J, et al. Non aqueous fracturing technologies for shale gas recovery. Physicochem Probl Miner Process, 2012, 49(1): 31
    [40]
    Gutierrez M, Lewis R, Masters I. Petroleum reservoir simulation coupling fluid flow and geomechanics. SPE Reserv Eval Eng, 2001, 4(3): 164 doi: 10.2118/72095-PA
    [41]
    Zhu W C, Wei C H, Liu J, et al. A model of coal-gas interaction under variable temperatures. Int J Coal Geol, 2011, 86(2-3): 213 doi: 10.1016/j.coal.2011.01.011
    [42]
    Qu H Y, Liu J S, Chen Z W, et al. Complex evolution of coal permeability during CO? injection under variable temperatures. Int J Greenh Gas Control, 2012, 9: 281 doi: 10.1016/j.ijggc.2012.04.003
    [43]
    Liu Y K, Xiong Y Q, Li Y, et al. Effects of oil expulsion and pressure on nanopore development in highly mature shale: Evidence from a pyrolysis study of the Eocene Maoming oil shale, South China. Mar Pet Geol, 2017, 86: 526 doi: 10.1016/j.marpetgeo.2017.06.012
    [44]
    Guo H J, Jia W L, Peng P A, et al. Evolution of organic matter and nanometer-scale pores in an artificially matured shale undergoing two distinct types of pyrolysis: A study of the Yanchang Shale with Type II kerogen. Org Geochem, 2017, 105: 56 doi: 10.1016/j.orggeochem.2017.01.004
    [45]
    Harpalani S, Schraufnagel A. Measurement of parameters impacting methane recovery from coal seams. Int J Min Geol Eng, 1990, 8(4): 369 doi: 10.1007/BF00920648
    [46]
    吳星輝, 李鵬, 郭奇峰, 等. 熱損傷巖石物理力學特性演化機制研究進展. 工程科學學報, 2022, 44(5):827 doi: 10.3321/j.issn.1001-053X.2022.5.bjkjdxxb202205001

    Wu X H, Li P, Guo Q F, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock. Chin J Eng, 2022, 44(5): 827 doi: 10.3321/j.issn.1001-053X.2022.5.bjkjdxxb202205001
    [47]
    Liu X J, Xiong J, Liang L X. Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. J Nat Gas Sci Eng, 2015, 22: 62 doi: 10.1016/j.jngse.2014.11.020
    [48]
    Lin K, Yuan Q Z, Zhao Y P. Using graphene to simplify the adsorption of methane on shale in MD simulations. Comput Mater Sci, 2017, 133: 99 doi: 10.1016/j.commatsci.2017.03.010
    [49]
    Lin K, Huang X F, Zhao Y P. Combining image recognition and simulation to reproduce the adsorption/desorption behaviors of shale gas. Energy Fuels, 2019, 34(1): 258
    [50]
    Jin F Y, Jiang T T, Yuan C D, et al. An improved viscosity prediction model of extra heavy oil for high temperature and high pressure. Fuel, 2022, 319: 123852 doi: 10.1016/j.fuel.2022.123852
    [51]
    Bai F T, Sun Y H, Liu Y M, et al. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel, 2017, 187: 1 doi: 10.1016/j.fuel.2016.09.012
    [52]
    Saif T, Lin Q Y, Bijeljic B, et al. Microstructural imaging and characterization of oil shale before and after pyrolysis. Fuel, 2017, 197: 562 doi: 10.1016/j.fuel.2017.02.030
    [53]
    Zhao J, Yang D, Kang Z Q, et al. A micro-CT study of changes in the internal structure of Daqing and Yan’an oil shales at high temperatures. Oil Shale, 2012, 29(4): 357 doi: 10.3176/oil.2012.4.06
    [54]
    Tiwari P, Deo M, Lin C L, et al. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel, 2013, 107: 547 doi: 10.1016/j.fuel.2013.01.006
    [55]
    Lan W J, Wang H X, Zhang X, et al. Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock. Energy, 2020, 206: 118211 doi: 10.1016/j.energy.2020.118211
    [56]
    Liu H P, Feng S Y, Zhang S Q, et al. Analysis of the pore structure of Longkou oil shale semicoke during fluidized bed combustion. Oil Shale, 2020, 37(2): 89 doi: 10.3176/oil.2020.2.01
    [57]
    Liu Z J, Yang D, Hu Y Q, et al. Influence of in situ pyrolysis on the evolution of pore structure of oil shale. Energies, 2018, 11(4): 755 doi: 10.3390/en11040755
    [58]
    Zhang H B, Liu J S, Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. Int J Rock Mech Min Sci, 2008, 45(8): 1226 doi: 10.1016/j.ijrmms.2007.11.007
    [59]
    Peng Y, Liu J S, Pan Z J, et al. A sequential model of shale gas transport under the influence of fully coupled multiple processes. J Nat Gas Sci Eng, 2015, 27: 808 doi: 10.1016/j.jngse.2015.09.031
    [60]
    Cao P, Liu J S, Leong Y K. A fully coupled multiscale shale deformation-gas transport model for the evaluation of shale gas extraction. Fuel, 2016, 178: 103 doi: 10.1016/j.fuel.2016.03.055
    [61]
    Zhao Y L, Lu G, Zhang L H, et al. Numerical simulation of shale gas reservoirs considering discrete fracture network using a coupled multiple transport mechanisms and geomechanics model. J Pet Sci Eng, 2020, 195: 107588 doi: 10.1016/j.petrol.2020.107588
    [62]
    Vernik L, Milovac J. Rock physics of organic shales. Lead Edge, 2011, 30(3): 318 doi: 10.1190/1.3567263
    [63]
    Islam M A, Skalle P. An experimental investigation of shale mechanical properties through drained and undrained test mechanisms. Rock Mech Rock Eng, 2013, 46(6): 1391 doi: 10.1007/s00603-013-0377-8
    [64]
    Berryman J G. Extension of poroelastic analysis to double-porosity materials: New technique in microgeomechanics. J Eng Mech, 2002, 128(8): 840
    [65]
    Lu Y H, Wei S M, Xia Y, et al. Modeling of geomechanics and fluid flow in fractured shale reservoirs with deformable multi-continuum matrix. J Pet Sci Eng, 2021, 196: 107576 doi: 10.1016/j.petrol.2020.107576
    [66]
    Zhang J, Li Y W, Pan Y S, et al. Experiments and analysis on the influence of multiple closed cemented natural fractures on hydraulic fracture propagation in a tight sandstone reservoir. Eng Geol, 2021, 281: 105981 doi: 10.1016/j.enggeo.2020.105981
    [67]
    Wang Y J, Zhao B, Zhang Z N. Numerical simulation of stress reorientation around wellbore in production and refracture stimulation. Eng Anal Bound Elem, 2021, 133: 165 doi: 10.1016/j.enganabound.2021.09.005
    [68]
    Saghafi A, Faiz M, Roberts D. CO? storage and gas diffusivity properties of coals from Sydney Basin, Australia. Int J Coal Geol, 2007, 70(1-3): 240 doi: 10.1016/j.coal.2006.03.006
    [69]
    Lasseux D, Valdés-Parada F J. On the developments of Darcy’s law to include inertial and slip effects. Comptes Rendus Mecanique, 2017, 345(9): 660 doi: 10.1016/j.crme.2017.06.005
    [70]
    Zhang L J, Li D L, Lu D T, et al. A new formulation of apparent permeability for gas transport in shale. J Nat Gas Sci Eng, 2015, 23: 221 doi: 10.1016/j.jngse.2015.01.042
    [71]
    Zhang L H, Shan B C, Zhao Y L, et al. Review of micro seepage mechanisms in shale gas reservoirs. Int J Heat Mass Transf, 2019, 139: 144 doi: 10.1016/j.ijheatmasstransfer.2019.04.141
    [72]
    Song W H, Yao J, Wang D Y, et al. Nanoscale confined gas and water multiphase transport in nanoporous shale with dual surface wettability. Adv Water Resour, 2019, 130: 300 doi: 10.1016/j.advwatres.2019.06.012
    [73]
    Sun Z, Li X F, Shi J T, et al. Apparent permeability model for real gas transport through shale gas reservoirs considering water distribution characteristic. Int J Heat Mass Transf, 2017, 115: 1008 doi: 10.1016/j.ijheatmasstransfer.2017.07.123
    [74]
    Li Y D, Kalantari-Dahaghi A, Zolfaghari A, et al. A new model for the transport of gaseous hydrocarbon in shale nanopores coupling real gas effect, adsorption, and multiphase pore fluid occupancies. Int J Heat Mass Transf, 2020, 148: 119026 doi: 10.1016/j.ijheatmasstransfer.2019.119026
    [75]
    Beskok A, Karniadakis G E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Eng, 1999, 3(1): 43 doi: 10.1080/108939599199864
    [76]
    Civan F, Rai C S, Sondergeld C H. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms. Transp Porous Med, 2011, 86(3): 925 doi: 10.1007/s11242-010-9665-x
    [77]
    Akilu S, Padmanabhan E, Sun Z. A review of transport mechanisms and models for unconventional tight shale gas reservoir systems. Int J Heat Mass Transf, 2021, 175: 121125 doi: 10.1016/j.ijheatmasstransfer.2021.121125
    [78]
    Taghavinejad A, Sharifi M, Heidaryan E, et al. Flow modeling in shale gas reservoirs: A comprehensive review. J Nat Gas Sci Eng, 2020, 83: 103535 doi: 10.1016/j.jngse.2020.103535
    [79]
    Zhou Y, Rajapakse R K N D, Graham J. A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration. Int J Solids Struct, 1998, 35(34-35): 4659 doi: 10.1016/S0020-7683(98)00089-4
    [80]
    Zhu W Y, Chen Z, Liu K. A new meshless method to solve the two-phase thermo-hydro-mechanical multi-physical field coupling problems in shale reservoirs. J Nat Gas Sci Eng, 2022, 105: 104683 doi: 10.1016/j.jngse.2022.104683
    [81]
    Huang Z W, Zhang S K, Yang R Y, et al. A review of liquid nitrogen fracturing technology. Fuel, 2020, 266: 117040 doi: 10.1016/j.fuel.2020.117040
    [82]
    Jia B, Tsau J S, Barati R. A review of the current progress of CO? injection EOR and carbon storage in shale oil reservoirs. Fuel, 2019, 236: 404 doi: 10.1016/j.fuel.2018.08.103
    [83]
    Hu L X, Li H Z, Babadagli T, et al. Thermal stimulation of shale formations by electromagnetic heating: A clean technique for enhancing oil and gas recovery. J Clean Prod, 2020, 277: 123197 doi: 10.1016/j.jclepro.2020.123197
    [84]
    Taheri-Shakib J, Kantzas A. A comprehensive review of microwave application on the oil shale: Prospects for shale oil production. Fuel, 2021, 305: 121519 doi: 10.1016/j.fuel.2021.121519
    [85]
    Gu F G, Chalaturnyk R. Permeability and porosity models considering anisotropy and discontinuity of coalbeds and application in coupled simulation. J Pet Sci Eng, 2010, 74(3-4): 113 doi: 10.1016/j.petrol.2010.09.002
    [86]
    Bhandari A R, Flemings P B, Polito P J, et al. Anisotropy and stress dependence of permeability in the Barnett shale. Transp Porous Med, 2015, 108(2): 393 doi: 10.1007/s11242-015-0482-0
    [87]
    Huang T, Tao Z W, Li E P, et al. Effect of permeability anisotropy on the production of multi-scale shale gas reservoirs. Energies, 2017, 10(10): 1549 doi: 10.3390/en10101549
    [88]
    Yuan J W, Jiang R Z, Cui Y Z, et al. The numerical simulation of thermal recovery considering rock deformation in shale gas reservoir. Int J Heat Mass Transfer, 2019, 138: 719 doi: 10.1016/j.ijheatmasstransfer.2019.04.098
    [89]
    Ma Y, Pan Z J, Zhong N N, et al. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China. Fuel, 2016, 180: 106 doi: 10.1016/j.fuel.2016.04.029
    [90]
    亓倩. 頁巖氣儲層多級壓裂水平井多場耦合非線性滲流理論研究[學位論文]. 北京: 北京科技大學, 2020

    Qi Q. Multi-field Coupling Nonlinear Seepage Theory of Multistage Fractured Horizontal Wells for Shale Gas Reservoirs [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
    [91]
    Frash L P, Carey J W, Welch N J. Scalable En Echelon Shear‐Fracture Aperture‐Roughness Mechanism: Theory, Validation, and Implications. J Geophys Res Solid Earth, 2019, 124: 957 doi: 10.1029/2018JB016525
    [92]
    Li W F, Frash L P, Welch N J, et al. Stress-dependent fracture permeability measurements and implications for shale gas production. Fuel, 2021, 290(9): 119984
    [93]
    Yang S, Wu K L, Xu J Z, et al. Roles of multicomponent adsorption and geomechanics in the development of an Eagle Ford shale condensate reservoir. Fuel, 2019, 242: 710 doi: 10.1016/j.fuel.2019.01.016
    [94]
    Guo T K, Tang S J, Sun J, et al. A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation. Appl Energy, 2019, 258: 113981
    [95]
    Noorishad J, Tsang C F, Witherspoon P A. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: Numerical approach. J Geophys Res, 1984, 89: 10365 doi: 10.1029/JB089iB12p10365
    [96]
    Rutqvist J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Comput Geosci, 2011, 37(6): 739 doi: 10.1016/j.cageo.2010.08.006
    [97]
    Wang W, Kolditz O. Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int J Numer Meth Eng, 2010, 69: 162
    [98]
    Longuemare P, Mainguy M, Lemonnier P, et al. Geomechanics in reservoir simulation: Overview of coupling methods and field case study. Oil Gas Sci Technol, 2002, 57(5): 471 doi: 10.2516/ogst:2002031
    [99]
    Minkoff S E, Stone C M, Bryant S, et al. Coupled fluid flow and geomechanical deformation modeling. J Pet Sci Eng, 2003, 38(1-2): 37 doi: 10.1016/S0920-4105(03)00021-4
    [100]
    Li J W, Wong Z Y, Tomin P, et al. Sequential Implicit Newton Method for Coupled Multi-Segment Wells//SPE Reservoir Simulation Conference. Galveston, 2019
    [101]
    Zhang R L, Wu Y S. Sequentially coupled model for multiphase flow, mean stress, and reactive solute transport with kinetic chemical reactions: Applications in CO? geological sequestration. J Porous Media, 2016, 19(11): 1001 doi: 10.1615/JPorMedia.v19.i11.60
    [102]
    Zhang R L, Xiong Y, Winterfeld P H, et al. A novel computational framework for thermal-hydrological-mechanical-chemical processes of CO? geological sequestration into a layered saline aquifer and a naturally fractured enhanced geothermal system. Greenh Gases Sci Technol, 2016, 6(3): 370 doi: 10.1002/ghg.1571
    [103]
    Settari A, Walters D A. Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. SPE J, 2001, 6(3): 334 doi: 10.2118/74142-PA
    [104]
    Han S C, Cheng Y F, Gao Q, et al. A fully coupled thermo-hydro-mechanical model with ice-water phase change for liquid nitrogen injection simulation. J Pet Sci Eng, 2021, 203(1): 108676
    [105]
    Fung L S, Dogru A H. Parallel unstructured-solver methods for simulation of complex giant reservoirs. SPE J, 2008, 13(4): 440 doi: 10.2118/106237-PA
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)

    Article views (494) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164