Citation: | HUANG Jing-teng, LI Qiang, GUAN Xin. An improved U-shaped network for brain tumor segmentation[J]. Chinese Journal of Engineering, 2023, 45(6): 1003-1012. doi: 10.13374/j.issn2095-9389.2022.03.25.003 |
[1] |
叢明, 吳童, 劉冬, 等. 基于監督學習的前列腺MR/TRUS圖像分割和配準方法. 工程科學學報, 2020, 42(10):1362
Cong M, Wu T, Liu D, et al. Prostate MR/TRUS image segmentation and registration methods based on supervised learning. Chin J Eng, 2020, 42(10): 1362
|
[2] |
Chen B S, Zhang L L, Chen H Y, et al. A novel extended kalman filter with support vector machine based method for the automatic diagnosis and segmentation of brain tumors. Comput Meth Prog Bio, 2021, 200: 105797 doi: 10.1016/j.cmpb.2020.105797
|
[3] |
Pinto A, Pereira S, Rasteiro D, et al. Hierarchical brain tumour segmentation using extremely randomized trees. Pattern Recogn, 2018, 82: 105 doi: 10.1016/j.patcog.2018.05.006
|
[4] |
Chen G X, Li Q, Shi F Q, et al. RFDCR: Automated brain lesion segmentation using cascaded random forests with dense conditional random fields. NeuroImage, 2020, 211: 116620 doi: 10.1016/j.neuroimage.2020.116620
|
[5] |
姜大光, 李明鳴, 陳羽中, 等. 骨架圖引導的級聯視網膜血管分割網絡. 工程科學學報, 2021, 43(9):1244
Jiang D G, Li M M, Chen Y Z, et al. Cascaded retinal vessel segmentation network guided by a skeleton map. Chin J Eng, 2021, 43(9): 1244
|
[6] |
Liu H X, Li Q, Wang I C. A deep-learning model with learnable group convolution and deep supervision for brain tumor segmentation. Math Probl Eng, 2021, 2021: 6661083
|
[7] |
Ali M J, Raza B, Shahid A R. Multi-level kronecker convolutional neural network (ML-KCNN) for glioma segmentation from multi-modal MRI volumetric data. J Digit Imaging, 2021, 34(4): 905 doi: 10.1007/s10278-021-00486-7
|
[8] |
Cui S G, Wei M J, Liu C, et al. GAN-segNet: A deep generative adversarial segmentation network for brain tumor semantic segmentation. Int J Imaging Syst Tech, 2022, 32(3): 857 doi: 10.1002/ima.22677
|
[9] |
Cheng G H, Ji H L, He L Y. Correcting and reweighting false label masks in brain tumor segmentation. Med Phys, 2021, 48(1): 169 doi: 10.1002/mp.14480
|
[10] |
Rahimpour M, Bertels J, Vandermeulen D, et al. Improving T1w MRI-based brain tumor segmentation using cross-modal distillation // Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. 2021, 11596: 261
|
[11] |
Jiang Z Y, Ding C X, Liu M F, et al. Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task // International MICCAI Brainlesion Workshop. Lima, 2020: 231
|
[12] |
Zhang L, Zhang J M, Shen P Y, et al. Block level skip connections across cascaded V-Net for multi-organ segmentation. IEEE Trans Med Imaging, 2020, 39(9): 2782 doi: 10.1109/TMI.2020.2975347
|
[13] |
?i?ek ?, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation // International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens, 2016: 424
|
[14] |
Huang G, Liu Z, Maaten L, et al. Densely connected convolutional networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 2261
|
[15] |
Wu J, Zhang Y, Wang K, et al. Skip connection U-Net for white matter hyperintensities segmentation from MRI. IEEE Access, 7: 155194
|
[16] |
Ma B F, Chang C Y. Semantic segmentation of high-resolution remote sensing images using multiscale skip connection network. IEEE Sens J, 2022, 22(4): 3745 doi: 10.1109/JSEN.2021.3139629
|
[17] |
Zhou Z W, Siddiquee M M R, Tajbakhsh N, et al. UNet: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging, 2020, 39(6): 1856 doi: 10.1109/TMI.2019.2959609
|
[18] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 770
|
[19] |
Sandler M, Howard A, Zhu M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 4510
|
[20] |
Yu C G, Liu K, Zou W. A method of small object detection based on improved deep learning. Opt Mem Neural Networks, 2020, 29(2): 69 doi: 10.3103/S1060992X2002006X
|
[21] |
Zhao W L, Wang Z J, Cai W A, et al. Multiscale inverted residual convolutional neural network for intelligent diagnosis of bearings under variable load condition. Measurement, 2022, 188: 110511 doi: 10.1016/j.measurement.2021.110511
|
[22] |
Zhang T Y, Shi C P, Liao D L, et al. Deep spectral spatial inverted residual network for hyperspectral image classification. Remote Sens, 2021, 13(21): 4472 doi: 10.3390/rs13214472
|
[23] |
Chen C, Liu X P, Ding M, et al. 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI // International Conference on Medical Image Computing and Computer-Assisted Intervention. Shenzhen, 2019: 184
|
[24] |
Luo Z R, Jia Z D, Yuan Z M, et al. HDC-net: Hierarchical decoupled convolution network for brain tumor segmentation. IEEE J Biomed Health Inform, 2021, 25(3): 737 doi: 10.1109/JBHI.2020.2998146
|
[25] |
Sudre C H, Li W Q, Vercauteren T, et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations // International Workshop on Deep Learning in Medical Image Analysis & International Workshop on Multimodal Learning for Clinical Decision Support. Québec City, 2017: 240
|
[26] |
Menze B H, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging, 2015, 34(10): 1993 doi: 10.1109/TMI.2014.2377694
|
[27] |
Bakas S, Akbari H, Sotiras A, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data, 2017, 4(1): 1
|
[28] |
Zhang Y, Lu Y, Chen W K, et al. MSMANet: A multi-scale mesh aggregation network for brain tumor segmentation. Appl Soft Comput, 2021, 110: 107733 doi: 10.1016/j.asoc.2021.107733
|
[29] |
Liu Z H, Tong L, Chen L, et al. CANet: Context aware network for brain glioma segmentation. IEEE Trans Med Imaging, 2021, 40(7): 1763 doi: 10.1109/TMI.2021.3065918
|
[30] |
Rosas-Gonzalez S, Birgui-Sekou T, Hidane M, et al. Asymmetric ensemble of asymmetric U-net models for brain tumor segmentation with uncertainty estimation. Front Neurol, 2021, 12: 609646 doi: 10.3389/fneur.2021.609646
|
[31] |
Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization // International MICCAI Brainlesion Workshop. Shenzhen, 2019: 311
|
[32] |
Zhou T X, Canu S, Vera P, et al. Latent correlation representation learning for brain tumor segmentation with missing MRI modalities. IEEE Trans Image Process, 2021, 30: 4263 doi: 10.1109/TIP.2021.3070752
|
[33] |
Valanarasu J M J, Sindagi V A, Hacihaliloglu I, et al. KiU-net: Overcomplete convolutional architectures for biomedical image and volumetric segmentation. IEEE Trans Med Imaging, 2022, 41(4): 965 doi: 10.1109/TMI.2021.3130469
|
[34] |
Sheng N, Liu D W, Zhang J X, et al. Second-order ResU-Net for automatic MRI brain tumor segmentation. Math Biosci Eng, 2021, 18(5): 4943 doi: 10.3934/mbe.2021251
|
[35] |
Zhao Y X, Zhang Y M, Liu C L. Bag of tricks for 3D MRI brain tumor segmentation // International MICCAI Brainlesion Workshop. Lima, 2020: 210
|