Citation: | XIA Rui, WANG Jing-chao, DENG Bo-yu, XUE Chao. LEO constellation-based electromagnetic monitoring intelligent processing framework and a review of key technologies[J]. Chinese Journal of Engineering, 2023, 45(5): 807-818. doi: 10.13374/j.issn2095-9389.2022.03.23.001 |
[1] |
蘇抗, 馬琴, 朱偉強, 等. 基于微納衛星的電磁頻譜監測系統技術. 航天電子對抗, 2018, 34(6):6 doi: 10.3969/j.issn.1673-2421.2018.06.002
Su K, Ma Q, Zhu W Q, et al. Micro-satellite based electromagnetic spectrum detection system technologies. Aerosp Electron Warf, 2018, 34(6): 6 doi: 10.3969/j.issn.1673-2421.2018.06.002
|
[2] |
Xia Z Q. Enlightenment of iridium’s comeback. Mod Enterp, 2001(6): 42
|
[3] |
Martínez P F O, Uribe G G A, Mosquera P F L. OneWeb: web content adaptation platform based on W3C Mobile Web Initiative guidelines. Ingeniería E Investig, 2011, 31(1): 117
|
[4] |
孫喆. “長征”十一號火箭成功發射“虹云”工程首顆衛星. 中國航天, 2019(1):42 doi: 10.3969/j.issn.1002-7742.2019.01.014
Sun Z. A LM-11 carrier rocket successfully sends the first satellite in Hongyun project. Aerosp China, 2019(1): 42 doi: 10.3969/j.issn.1002-7742.2019.01.014
|
[5] |
夏瑞, 鄧博于, 王敬超. 低軌電磁監測系統進展綜述//2021全國電磁頻譜安全與控制大會. 南京, 2021: 262
Xia R, Deng B Y, Wang J C. A review of the progress of low-orbit electromagnetic monitoring system // 2021 National Conference on Electromagnetic Spectrum Security and Control. Nanjing, 2021: 262
|
[6] |
Jewett R. HawkEye 360 Prepares to Expand RF Tracking Capabilities With Second Cluster [EB/OL]. (2021-1-28) [2022-3-23]. https://www.satellitetoday.com/imagery-and-sensing/2021/01/28/hawkeye-360-prepares-to-expand-rf-tracking-capabilities-with-second-cluster/
|
[7] |
Liu X, Sun Q Q, Lu W D, et al. Big-data-based intelligent spectrum sensing for heterogeneous spectrum communications in 5G. IEEE Wirel Commun, 2020, 27(5): 67 doi: 10.1109/MWC.001.1900493
|
[8] |
Oquab M, Bottou L, Laptev I, et al. Learning and transferring mid-level image representations using convolutional neural networks // 2014 IEEE Conference on Computer Vision & Pattern Recognition. Columbus, 2014: 1717
|
[9] |
Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks // IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, 2013: 6645
|
[10] |
Otter D W, Medina J R, Kalita J K. A survey of the usages of deep learning for natural language processing. IEEE Trans Neural Netw Learn Syst, 2021, 32(2): 604 doi: 10.1109/TNNLS.2020.2979670
|
[11] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504 doi: 10.1126/science.1127647
|
[12] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back propagating errors. Nature, 1986, 323(6088): 533 doi: 10.1038/323533a0
|
[13] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278 doi: 10.1109/5.726791
|
[14] |
Williams R J, Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput, 1989, 1(2): 270 doi: 10.1162/neco.1989.1.2.270
|
[15] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is All you Need // 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, 2017
|
[16] |
Zheng S, Chen S, Yang L, et al. Big data processing architecture for radio signals empowered by deep learning: Concept, experiment, applications and challenges. IEEE Access, 2018, 6: 55907 doi: 10.1109/ACCESS.2018.2872769
|
[17] |
Lee D J, Jang M S. Optimal spectrum sensing time considering spectrum handoff due to false alarm in cognitive radio networks. IEEE Commun Lett, 2009, 13(12): 899 doi: 10.1109/LCOMM.2009.12.091448
|
[18] |
Taherpour A, Nasiri-Kenari M, Gazor S. Multiple antenna spectrum sensing in cognitive radios. IEEE Trans Wirel Commun, 2010, 9(2): 814 doi: 10.1109/TWC.2009.02.090385
|
[19] |
Zeng Y H, Liang Y C. Robustness of the cyclostationary detection to cyclic frequency mismatch // 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Istanbul, 2010: 2704
|
[20] |
Chen H S, Gao W, Daut D G. Signature based spectrum sensing algorithms for IEEE 802.22 WRAN // 2007 IEEE International Conference on Communications. Glasgow, 2007: 6487
|
[21] |
Liu C, Wang J, Liu X M, et al. Maximum eigenvalue-based goodness-of-fit detection for spectrum sensing in cognitive radio. IEEE Trans Veh Technol, 2019, 68(8): 7747 doi: 10.1109/TVT.2019.2923648
|
[22] |
周明. 認知無線電網絡合作頻譜感知中的SSDF攻擊及其防御機制[學位論文]. 杭州: 浙江大學, 2016
Zhou M. SSDF Attack and Defense Strategies in Cooperative Spectrum Sensing of Cognitive Radio Networks [Dissertation]. Hangzhou: Zhejiang University, 2016
|
[23] |
Hu L N, Cao N, Mao M H, et al. Dynamic adaptive double-threshold cooperative spectrum sensing with multi-level quantization // 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Chongqing, 2019: 1381
|
[24] |
Hamza D, A?ssa S, Aniba G. Equal gain combining for cooperative spectrum sensing in cognitive radio networks. IEEE Trans Wirel Commun, 2014, 13(8): 4334 doi: 10.1109/TWC.2014.2317788
|
[25] |
Ali A, Hamouda W. Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Commun Surv Tutor, 2017, 19(2): 1277 doi: 10.1109/COMST.2016.2631080
|
[26] |
Pan G L, Li J, Lin F. A cognitive radio spectrum sensing method for an OFDM signal based on deep learning and cycle spectrum. Int J Digit Multimed Broadcast, 2020, 2020: 5069021
|
[27] |
Liu C, Wang J, Liu X M, et al. Deep CM-CNN for spectrum sensing in cognitive radio. IEEE J Sel Areas Commun, 2019, 37(10): 2306 doi: 10.1109/JSAC.2019.2933892
|
[28] |
Zhao Y X, Zhu X M, Duan G X, et al. Spectrum sensing for cognitive radio using FLOM and CNN in alpha noise // 2021 IEEE Wireless Communications and Networking Conference (WCNC). Nanjing, 2021: 1
|
[29] |
Uvaydov D, D’Oro S, Restuccia F, et al. DeepSense: fast wideband spectrum sensing through real-time In-the-loop deep learning // IEEE INFOCOM 2021?IEEE Conference on Computer Communications. Vancouver, 2021: 1
|
[30] |
Chen Z B, Xu Y Q, Wang H B, et al. Deep STFT-CNN for spectrum sensing in cognitive radio. IEEE Commun Lett, 2021, 25(3): 864 doi: 10.1109/LCOMM.2020.3037273
|
[31] |
Xie J, Fang J, Liu C, et al. Unsupervised deep spectrum sensing: A variational auto-encoder based approach. IEEE Trans Veh Technol, 2020, 69(5): 5307 doi: 10.1109/TVT.2020.2982203
|
[32] |
Lee W, Kim M, Cho D H. Deep cooperative sensing: Cooperative spectrum sensing based on convolutional neural networks. IEEE Trans Veh Technol, 2019, 68(3): 3005 doi: 10.1109/TVT.2019.2891291
|
[33] |
Cai P X, Zhang Y, Pan C Y. Coordination graph-based deep reinforcement learning for cooperative spectrum sensing under correlated fading. IEEE Wirel Commun Lett, 2020, 9(10): 1778 doi: 10.1109/LWC.2020.3004687
|
[34] |
Chen Z B, Xu Y Q, Wang H B, et al. Federated learning-based cooperative spectrum sensing in cognitive radio. IEEE Commun Lett, 2022, 26(2): 330 doi: 10.1109/LCOMM.2021.3114742
|
[35] |
Sarikhani R, Keynia F. Cooperative spectrum sensing meets machine learning: Deep reinforcement learning approach. IEEE Commun Lett, 2020, 24(7): 1459 doi: 10.1109/LCOMM.2020.2984430
|
[36] |
王川川, 曾勇虎. 欠定盲源分離算法的研究現狀及展望. 北京郵電大學學報, 2018, 41(6):103 doi: 10.13190/j.jbupt.2018-004
Wang C C, Zeng Y H. Research status and prospects of underdetermined blind source separation algorithms. J Beijing Univ Posts Telecommun, 2018, 41(6): 103 doi: 10.13190/j.jbupt.2018-004
|
[37] |
Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations. Signal Process, 2001, 81(11): 2353 doi: 10.1016/S0165-1684(01)00120-7
|
[38] |
Carabias-Orti J J, Nikunen J, Virtanen T, et al. Multichannel blind sound source separation using spatial covariance model with level and time differences and nonnegative matrix factorization. IEEE/ACM Trans Audio Speech Lang Process, 2018, 26(9): 1512 doi: 10.1109/TASLP.2018.2830105
|
[39] |
Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788 doi: 10.1038/44565
|
[40] |
毋文峰, 陳小虎, 蘇勛家, 等. 機械振動源數估計的小波方法. 機械科學與技術, 2011, 30(10):1679 doi: 10.13433/j.cnki.1003-8728.2011.10.018
Wu W F, Chen X H, Su X J, et al. Wavelet decomposition algorithm for source number estimation of mechanical vibration. Mech Sci Technol Aerosp Eng, 2011, 30(10): 1679 doi: 10.13433/j.cnki.1003-8728.2011.10.018
|
[41] |
李志農, 劉衛兵, 易小兵. 基于局域均值分解的機械故障欠定盲源分離方法研究. 機械工程學報, 2011, 47(7):97 doi: 10.3901/JME.2011.07.097
Li Z N, Liu W B, Yi X B. Underdetermined blind source separation method of machine faults based on local Mean decomposition. J Mech Eng, 2011, 47(7): 97 doi: 10.3901/JME.2011.07.097
|
[42] |
Hershey J R, Chen Z, Roux J L, et al. Deep clustering: discriminative embeddings for segmentation and separation // 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai, 2016: 31
|
[43] |
Wang S S, Naithani G, Virtanen T. Low-latency Deep Clustering for Speech Separation//ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, 2019: 76
|
[44] |
Chen Z, Luo Y, Mesgarani N. Deep attractor network for single-microphone speaker separation // 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, 2017: 246
|
[45] |
Han C, Luo Y, Mesgarani N. Online deep attractor network for real-time single-channel speech separation // ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton, 2019: 361
|
[46] |
Drude L, Higuchi T, Kinoshita K, et al. Dual frequency- and block-permutation alignment for deep learning based block-online blind source separation // 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, 2018: 691
|
[47] |
Kinoshita K, Drude L, Delcroix M, et al. Listening to each speaker one by one with recurrent selective hearing networks // 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, 2018: 5064
|
[48] |
Brunner G, Naas N, Palsson S, et al. Monaural music source separation using a ResNet latent separator network // 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). Portland, 2019: 1124
|
[49] |
Luo Y, Mesgarani N. Conv-TasNet: Surpassing ideal time–frequency magnitude masking for speech separation. IEEE/ACM Trans Audio Speech Lang Process, 2019, 27(8): 1256 doi: 10.1109/TASLP.2019.2915167
|
[50] |
趙孟晨, 姚秀娟, 王靜, 等. 基于Stacked-TCN的空間混疊信號單通道盲源分離方法. 系統工程與電子技術, 2021, 43(9):2628 doi: 10.12305/j.issn.1001-506X.2021.09.32
Zhao M C, Yao X J, Wang J, et al. Single-channel blind source separation method of spatial aliasing signal based on Stacked-TCN. Syst Eng Electron, 2021, 43(9): 2628 doi: 10.12305/j.issn.1001-506X.2021.09.32
|
[51] |
Togami M. Deep Multi-channel speech source separation with time-frequency masking for spatially filtered microphone input signal // 2020 28th European Signal Processing Conference (EUSIPCO). Amsterdam, 2021: 266
|
[52] |
Watanabe R, Kitamura D, Saruwatari H, et al. DNN-Based frequency component prediction for frequency-domain audio source separation // 2020 28th European Signal Processing Conference (EUSIPCO). Amsterdam, 2021: 805
|
[53] |
Drude L, Hasenklever D, Haeb-Umbach R. Unsupervised training of a deep clustering model for multichannel blind source separation // ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, 2019: 695
|
[54] |
Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag, 1986, 34(3): 276 doi: 10.1109/TAP.1986.1143830
|
[55] |
Weiss A J. Direct position determination of narrowband radio frequency transmitters. IEEE Signal Process Lett, 2004, 11(5): 513 doi: 10.1109/LSP.2004.826501
|
[56] |
Carter G C. Coherence and time delay estimation. Proc IEEE, 1987, 75(2): 236 doi: 10.1109/PROC.1987.13723
|
[57] |
So H, Ching P C, Chan Y T. A new algorithm for explicit adaptation of time delay. IEEE Trans Signal Process, 1994, 42(7): 1816 doi: 10.1109/78.298289
|
[58] |
Ho K C. Bias reduction for an explicit solution of source localization using TDOA. IEEE Trans Signal Process, 2012, 60(5): 2101 doi: 10.1109/TSP.2012.2187283
|
[59] |
Ulman R, Geraniotis E. Wideband TDOA/FDOA processing using summation of short-time CAF’s. IEEE Trans Signal Process, 1999, 47(12): 3193 doi: 10.1109/78.806065
|
[60] |
Ho K C, Lu X N, Kovavisaruch L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution. IEEE Trans Signal Process, 2007, 55: 684 doi: 10.1109/TSP.2006.885744
|
[61] |
Zhang S X, Xing M D. A novel Doppler chirp rate and baseline estimation approach in the time domain based on weighted local maximum-likelihood for an MC-HRWS SAR system. IEEE Geosci Remote Sens Lett, 2017, 14(3): 299 doi: 10.1109/LGRS.2016.2633359
|
[62] |
Zhang W Q. Fast Doppler rate estimation based on fourth-order moment spectrum. Electron Lett, 2015, 51(23): 1926 doi: 10.1049/el.2015.2182
|
[63] |
Wu H, Yao F Q, Chen Y, et al. Multibit-quantization-based collaborative spectrum sensing scheme for cognitive sensor networks. IEEE Access, 2017, 5: 25207 doi: 10.1109/ACCESS.2017.2767101
|
[64] |
Weiss A J. On the accuracy of a cellular location system based on RSS measurements. IEEE Trans Veh Technol, 2003, 52(6): 1508 doi: 10.1109/TVT.2003.819613
|
[65] |
Weiss A J, Amar A. Direct geolocation of stationary wideband radio signal based on time delays and Doppler shifts // 2009 IEEE/SP 15th Workshop on Statistical Signal Processing. Cardiff, 2009: 101
|
[66] |
Chen X, Wang D, Liu Z P, et al. A fast direct position determination for multiple sources based on radial basis function neural network // 2018 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO). Chengdu, 2018: 381
|
[67] |
Zhao C, Zhao Y J. One recurrent neural networks solution for passive localization. Neural Process Lett, 2019, 49(2): 787 doi: 10.1007/s11063-018-9856-y
|
[68] |
Pak S, Chalise B K, Himed B. Target localization in multi-static passive radar systems with artificial neural networks // 2019 International Radar Conference (RADAR). Toulon, 2019: 1
|
[69] |
Liu G N, Wu H C, Xiang W D, et al. Indoor object localization and tracking using deep learning over received signal strength // 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Paris, 2020: 1
|
[70] |
Wang Z W, Hu D X, Zhao Y J, et al. Real-time passive localization of TDOA via neural networks. IEEE Commun Lett, 2021, 25(10): 3320 doi: 10.1109/LCOMM.2021.3097065
|
[71] |
Gotsis K A, Kaifas T N, Siakavara K, et al. Direction of Arrival (DoA) estimation for a Switched-Beam DS-CDMA System using Neural Networks // 2007 19th International Conference on Applied Electromagnetics and Communications. Dubrovnik, 2007: 1
|