Citation: | LIU Hong-mei, PENG Cai-jing, HAN Fang, ZHANG Yuan. Multi-view hybrid neural network for spatiotemporal semi-supervised sleep staging[J]. Chinese Journal of Engineering, 2023, 45(5): 797-806. doi: 10.13374/j.issn2095-9389.2022.03.22.005 |
[1] |
Maquet P. The role of sleep in learning and memory. Science, 2001, 294(5544): 1048 doi: 10.1126/science.1062856
|
[2] |
Berry R B, Brooks R, Gamaldo C, et al. AASM scoring manual updates for 2017 (version 2.4). J Clin Sleep Med, 2017, 13(5): 665 doi: 10.5664/jcsm.6576
|
[3] |
張遠. 面向睡眠健康的感知、計算和干預. 科學通報, 2022, 67(1):27
Zhang Y. Sensing, computing and intervention for sleep health. Chin Sci Bull, 2022, 67(1): 27
|
[4] |
Phan H, Andreotti F, Cooray N, et al. Joint classification and prediction CNN framework for automatic sleep stage classification. IEEE Trans Biomed Eng, 2019, 66(5): 1285 doi: 10.1109/TBME.2018.2872652
|
[5] |
Chambon S, Galtier M N, Arnal P J, et al. A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(4): 758 doi: 10.1109/TNSRE.2018.2813138
|
[6] |
Perslev M, Jensen M H, Darkner S, et al. U-time: A fully convolutional network for time series segmentation applied to sleep staging // Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver, 2019: 1
|
[7] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // IEEE Conference on Computer Vision and Pattern Recognition. New York, 2016: 770
|
[8] |
Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J/OL]. arXiv preprint (2020-04-19) [2022-03-22].https://arxiv.org/abs/2004.08955
|
[9] |
Phan H, Andreotti F, Cooray N, et al. Automatic sleep stage classification using single-channel EEG: Learning sequential features with attention-based recurrent neural networks // 40th Annual International Conference IEEE Engineering in Medicine and Biology Society, Honolulu, 2018: 1452
|
[10] |
Phan H, Andreotti F, Cooray N, et al. SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to- sequence automatic sleep staging. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(3): 400 doi: 10.1109/TNSRE.2019.2896659
|
[11] |
Phan H, Chén O Y, Koch P, et al. Towards more accurate automatic sleep staging via deep transfer learning. IEEE Trans Biomed Eng, 2021, 68(6): 1787 doi: 10.1109/TBME.2020.3020381
|
[12] |
Supratak A, Dong H, Wu C, et al. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Sys Rehabil Eng, 2017, 25(11): 1998 doi: 10.1109/TNSRE.2017.2721116
|
[13] |
Guillot A, Thorey V. Robust, et al. SleepNet: Transfer learning for automated sleep staging at scale. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1441
|
[14] |
Chen K, Zhang C, Ma J, et al. Sleep staging from single-channel EEG with multi-scale feature and contextual information. Sleep Breath, 2019, 23(4): 1159 doi: 10.1007/s11325-019-01789-4
|
[15] |
Jia Z Y, Lin Y F, Wang J, et al. SalientSleepNet: Multimodal salient wave detection network for sleep staging // Thirtieth International Joint Conference on Artificial Intelligence. Montreal, 2021: 2614
|
[16] |
金崢, 賈克斌, 袁野. 基于混合注意力時序網絡的睡眠分期算法研究. 生物醫學工程學雜志, 2021, 38(2):241 doi: 10.7507/1001-5515.202008006
Jin Z, Jia K B, Yuan Y. A hybrid attention temporal sequential network for sleep stage classification. J Biomed Eng, 2021, 38(2): 241 doi: 10.7507/1001-5515.202008006
|
[17] |
Phan H, Chén O Y, Tran M C, et al. XSleepNet: Multi-view sequential model for automatic sleep staging. IEEE Trans Pattern Anal Mach Intell, 2022, 44(9): 5903
|
[18] |
Fiorillo L, Favaro P, Faraci F D. DeepSleepNet-lite: A simplified automatic sleep stage scoring model with uncertainty estimates. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 2076 doi: 10.1109/TNSRE.2021.3117970
|
[19] |
Dong H, Supratak A, Pan W, et al. Mixed neural network approach for temporal sleep stage classification. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(2): 324 doi: 10.1109/TNSRE.2017.2733220
|
[20] |
Tsinalis O, Matthews P M, Guo Y K, et al. Automatic sleep stage scoring with single-channel EEG using convolutional neural networks[J/OL]. arXiv preprint (2016-10-05) [2022-03-22]. https://arxiv.org/abs/1610.01683
|
[21] |
Zhang H J, Wang J, Xiao Q F, et al. SleepPriorCL: Contrastive representation learning with prior knowledge-based positive mining and adaptive temperature for sleep staging[J/OL]. arXiv preprint (2021-10-15) [2022-3-22].https://arxiv.org/abs/2110.09966
|
[22] |
Xiao Q, Wang J, Ye J, et al. Self-supervised learning for sleep stage classification with predictive and discriminative contrastive coding // 2021 IEEE International Conference on Acoustics Speech and Signal Processing. Toronto, 2021: 1290
|
[23] |
Kemp B, Zwinderman A H, Tuk B, et al. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng, 2000, 47(9): 1185 doi: 10.1109/10.867928
|
[24] |
Guillot A, Sauvet F, During E H, et al. Dreem open datasets: Multi-scored sleep datasets to compare human and automated sleep staging. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(9): 1955 doi: 10.1109/TNSRE.2020.3011181
|
[25] |
Sohn K, Berthelot D, Li C, et al. FixMatch: Simplifying semi-supervised learning with consistency and confidence. Adv Neural inf Process Syst, 2020, 33: 596
|
[26] |
Korkalainen H, Aakko J, Nikkonen S, et al. Accurate deep learning-based sleep staging in a clinical population with suspected obstructive sleep apnea. IEEE J Biomed Health Inform, 2020, 24(7): 2073
|
[27] |
Cui Y, Jia M L, Lin T Y, et al. Class-balanced loss based on effective number of samples // 2019 IEEE/CVF Conf Comput Vis Pattern Recognit. Long Beach, 2019: 9260
|
[28] |
Zhang C H, Yu W W, Li Y M, et al. CMS2-net: Semi-supervised sleep staging for diverse obstructive sleep apnea severity. IEEE J Biomed Health Inform, 2022, 26(7): 3447 doi: 10.1109/JBHI.2022.3156585
|
[29] |
Wu Z R, Xiong Y J, Yu S X, et al. Unsupervised feature learning via non-parametric instance discrimination // 2018 IEEE/CVF Conf Comput Vis Pattern Recognit. Salt Lake City, 2018: 3733
|