Citation: | ZHANG Jin, HUANG Li-ya, CAI Feng-shi, LUO Zhi-qiang, YUAN Zhi-hao. Preparation of 2,6-diaminoanthraquinone/reduced graphene oxide-based composites as cathode materials for organic lithium batteries[J]. Chinese Journal of Engineering, 2023, 45(7): 1165-1174. doi: 10.13374/j.issn2095-9389.2022.03.22.003 |
[1] |
Pomerantseva E, Bonaccorso F, Feng X L, et al. Energy storage: The future enabled by nanomaterials. Science, 2019, 366(6468): eaan8285 doi: 10.1126/science.aan8285
|
[2] |
Kebede A A, Kalogiannis T, van Mierlo J, et al. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew Sustain Energy Rev, 2022, 159: 112213 doi: 10.1016/j.rser.2022.112213
|
[3] |
韓嘯, 張成錕, 吳華龍, 等. 鋰離子電池的工作原理與關鍵材料. 金屬功能材料, 2021, 28(2):37 doi: 10.13228/j.boyuan.issn1005-8192.20210001
Han X, Zhang C K, Wu H L, et al. Working mechanism and key materials of the lithium ion batteries. Met Funct Mater, 2021, 28(2): 37 doi: 10.13228/j.boyuan.issn1005-8192.20210001
|
[4] |
李仲明, 李斌, 馮東, 等. 鋰離子電池正極材料研究進展. 復合材料學報, 2022, 39(2):513
Li Z M, Li B, Feng D, et al. Research progress of cathode materials for lithium-ion battery. Acta Mater Compos Sin, 2022, 39(2): 513
|
[5] |
楊溢, 何亞鵬, 張盼盼, 等. 鋰離子電池富鋰正極材料的包覆改性研究進展. 工程科學學報, 2022, 44(3):367 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203006
Yang Y, He Y P, Zhang P P, et al. Research progress on coating modification of lithium-rich cathode materials for lithium-ion batteries. Chin J Eng, 2022, 44(3): 367 doi: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203006
|
[6] |
Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun, 2020, 11: 1550 doi: 10.1038/s41467-020-15355-0
|
[7] |
Bu X H, Shustova N B, Sargent E H. Editorial for the special issue: Dimensionality of emerging materials and energy. Adv Energy Mater, 2022, 12(4): 2103816 doi: 10.1002/aenm.202103816
|
[8] |
Sethurajan M, Gaydardzhiev S. Bioprocessing of spent lithium ion batteries for critical metals recovery - A review. Resour Conserv Recycl, 2021, 165: 105225 doi: 10.1016/j.resconrec.2020.105225
|
[9] |
Lyu Y C, Wu X, Wang K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater, 2020, 11(2): 2000982
|
[10] |
Deng Y P, Wu Z G, Liang R L, et al. Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries. Adv Funct Mater, 2019, 29(19): 1808522 doi: 10.1002/adfm.201808522
|
[11] |
Liu D M, Fan X J, Li Z H, et al. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries. Nano Energy, 2019, 58: 786 doi: 10.1016/j.nanoen.2019.01.080
|
[12] |
Zhao S Q, Yan K, Zhang J Q, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries. Angew Chem Int Ed Engl, 2021, 60(5): 2208 doi: 10.1002/anie.202000262
|
[13] |
Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem, 2020, 4(3): 127 doi: 10.1038/s41570-020-0160-9
|
[14] |
Lee S C, Hong J, Kang K. Redox-active organic compounds for future sustainable energy storage system. Adv Energy Mater, 2020, 10(30): 2001445 doi: 10.1002/aenm.202001445
|
[15] |
Gong Z S, Zheng S L, Zhang J, et al. Cross-linked PVA/HNT composite separator enables stable lithium-organic batteries under elevated temperature. ACS Appl Mater Interfaces, 2022, 14(9): 11474 doi: 10.1021/acsami.1c23962
|
[16] |
Shea J J, Luo C. Organic electrode materials for metal ion batteries. ACS Appl Mater Interfaces, 2020, 12(5): 5361 doi: 10.1021/acsami.9b20384
|
[17] |
Chen Y, Wang C L. Designing high performance organic batteries. Acc Chem Res, 2020, 53(11): 2636 doi: 10.1021/acs.accounts.0c00465
|
[18] |
Wu Y C, Chen Y, Tang M, et al. A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: Reconsidering its structures. Chem Commun, 2019, 55(73): 10856 doi: 10.1039/C9CC05679C
|
[19] |
孫會民, 閆冰, 黃葦葦, 等. 醌類電極材料Calix[4]quinone在二次電池中的應用. 儲能科學與技術, 2019, 8(4):702 doi: 10.12028/j.issn.2095-4239.2019.0023
Sun H M, Yan B, Huang W W, et al. Application of Calix[4]quinone in secondary batteries. Energy Storage Sci Technol, 2019, 8(4): 702 doi: 10.12028/j.issn.2095-4239.2019.0023
|
[20] |
Yan L J, Zhao C X, Sha Y, et al. Electrochemical redox behavior of organic quinone compounds in aqueous metal ion electrolytes. Nano Energy, 2020, 73: 104766 doi: 10.1016/j.nanoen.2020.104766
|
[21] |
Luo Z Q, Liu L J, Zhao Q, et al. An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew Chem Int Ed Engl, 2017, 56(41): 12561 doi: 10.1002/anie.201706604
|
[22] |
Liang Y L, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat Mater, 2017, 16(8): 841 doi: 10.1038/nmat4919
|
[23] |
古麗巴哈爾?達吾提, 盧勇, 趙慶, 等. 可充鋰電池醌類化合物電極材料. 物理化學學報, 2016, 32(7):1593 doi: 10.3866/PKU.WHXB201605231
Gulbahar D, Lu Y, Zhao Q, et al. Quinones as electrode materials for rechargeable lithium batteries. Acta Phys Chimica Sin, 2016, 32(7): 1593 doi: 10.3866/PKU.WHXB201605231
|
[24] |
Zhu L M, Liu J B, Liu Z Q, et al. Anthraquinones with ionizable sodium sulfonate groups as renewable cathode materials for sodium-ion batteries. ChemElectroChem, 2019, 6(3): 787 doi: 10.1002/celc.201801252
|
[25] |
Zhao Q, Zhu Z, Chen J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv Mater, 2017, 29(48): 1607007 doi: 10.1002/adma.201607007
|
[26] |
Zhu T X, Liu D Y, Shi L, et al. Nitrogen-doped hierarchical porous carbon-promoted adsorption of anthraquinone for long-life organic batteries. ACS Appl Mater Interfaces, 2020, 12(31): 34910 doi: 10.1021/acsami.0c08214
|
[27] |
Mao W T, Ding Y M, Li M L, et al. Construction of a poly(anthraquinone sulfide)/carbon nanotube composite with enhanced Li-ion storage capacity. ChemElectroChem, 2021, 8(9): 1678 doi: 10.1002/celc.202100259
|
[28] |
王玉琪, 藍海航, 侯瓊, 等. 蒽醌類有機電極材料在新型二次電池中的應用研究進展. 稀有金屬, 2022, 46(2):238 doi: 10.13373/j.cnki.cjrm.XY20060042
Wang Y Q, Lan H H, Hou Q, et al. Progress in application of anthraquinone organic electrode materials in new secondary batteries. Chin J Rare Met, 2022, 46(2): 238 doi: 10.13373/j.cnki.cjrm.XY20060042
|
[29] |
Zhang K, Guo C Y, Zhao Q, et al. High-performance organic lithium batteries with an ether-based electrolyte and 9, 10-anthraquinone (AQ)/CMK-3 cathode. Adv Sci, 2015, 2(5): 1500018 doi: 10.1002/advs.201500018
|
[30] |
Yao M, Sano H, Ando H, et al. Anthraquinone-based oligomer as a long cycle-life organic electrode material for use in rechargeable batteries. ChemPhysChem, 2019, 20(7): 967 doi: 10.1002/cphc.201900012
|
[31] |
Li J H, Cai Y F, Wu H M, et al. Polymers in lithium-ion and lithium metal batteries. Adv Energy Mater, 2021, 11(15): 2003239 doi: 10.1002/aenm.202003239
|
[32] |
Huang H B, Shi H D, Das P, et al. The chemistry and promising applications of graphene and porous graphene materials. Adv Funct Mater, 2020, 30(41): 1909035 doi: 10.1002/adfm.201909035
|
[33] |
Zhou T Z, Cheng Q F. Chemical strategies for making strong graphene materials. Angew Chem Int Ed Engl, 2021, 60(34): 18397 doi: 10.1002/anie.202102761
|
[34] |
Olabi A G, Abdelkareem M A, Wilberforce T, et al. Application of graphene in energy storage device - A review. Renew Sustain Energy Rev, 2021, 135: 110026 doi: 10.1016/j.rser.2020.110026
|
[35] |
Luo Z Q, Liu L J, Ning J X, et al. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed Engl, 2018, 57(30): 9443 doi: 10.1002/anie.201805540
|
[36] |
翁程杰, 史葉勛, 何大方, 等. 水熱法制備還原氧化石墨烯及其導電性調控. 化工學報, 2018, 69(7):3263
Weng C J, Shi Y X, He D F, et al. Hydrothermal synthesis of reduced graphene oxide with tunable conductivity. CIESC J, 2018, 69(7): 3263
|
[37] |
Jankovsky O, Marvan P, Nová?ek M, et al. Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Appl Mater Today, 2016, 4: 45 doi: 10.1016/j.apmt.2016.06.001
|
[38] |
Wang H W, Zhang Y, Ang H X, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater, 2016, 26(18): 3082 doi: 10.1002/adfm.201505240
|
[39] |
Tang M, Zhu S L, Liu Z T, et al. Tailoring π-conjugated systems: From π-π stacking to high-rate-performance organic cathodes. Chem, 2018, 4(11): 2600 doi: 10.1016/j.chempr.2018.08.014
|
[40] |
趙磊, 王安邦, 王維坤, 等. 氨基蒽醌衍生物的合成及其用作鋰電池正極材料的電化學性能. 物理化學學報, 2012, 28(3):596 doi: 10.3866/PKU.WHXB201112261
Zhao L, Wang A B, Wang W K, et al. Preparation and electrochemical performance of aminoanthraquinone derivative as cathode materials in rechargeable lithium batteries. Acta Phys-chim Sin, 2012, 28(3): 596 doi: 10.3866/PKU.WHXB201112261
|
[41] |
Luo Z Q, Zheng S L, Zhao S, et al. High energy density aqueous zinc-benzoquinone battery enabled by carbon cloth with multiple anchoring effects. J Mater Chem A, 2021, 9(10): 6138
|
[42] |
Hu B L H, Wu F Y, Lin C T, et al. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun, 2013, 4: 1687 doi: 10.1038/ncomms2705
|