Citation: | LING Hai-tao, WU Jin-yuan, CHANG Li-zhong, YANG Shu-feng, QIU Sheng-tao. Effect of reoxidation on inclusions in Al-killed stainless steel during the casting start process[J]. Chinese Journal of Engineering, 2023, 45(5): 737-746. doi: 10.13374/j.issn2095-9389.2022.03.22.002 |
[1] |
Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333
|
[2] |
Kim W Y, Nam G J, Kim S Y. Evolution of non-metallic inclusions in Al-killed stainless steelmaking. Metall Mater Trans B, 2021, 52(3): 1508 doi: 10.1007/s11663-021-02119-4
|
[3] |
華承健, 王敏, 張孟昀, 等. 浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響. 工程科學學報, 2021, 43(7):925
Hua C J, Wang M, Zhang M Y, et al. Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport. Chin J Eng, 2021, 43(7): 925
|
[4] |
王啟明, 成國光. 含Ti不銹鋼冶金工藝進展. 工程科學學報, 2021, 43(11):1447
Wang Q M, Cheng G G. Metallurgy development of Ti-stabilized stainless steel. Chin J Eng, 2021, 43(11): 1447
|
[5] |
Park J H, Lee S B, Kim D S. Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment. Metall Mater Trans B, 2005, 36(1): 67 doi: 10.1007/s11663-005-0007-2
|
[6] |
Ren Y, Zhang L F, Fang W, et al. Effect of slag composition on inclusions in Si-deoxidized 18Cr–8Ni stainless steels. Metall Mater Trans B, 2016, 47(2): 1024 doi: 10.1007/s11663-015-0554-0
|
[7] |
張樂辰, 包燕平, 王敏, 等. TP347H精煉渣二次氧化控制及夾雜物變性處理. 工程科學學報, 2016, 38(Suppl 1):1
Zhang L C, Bao Y P, Wang M, et al. Reoxidation control of refining slag and inclusion modification in TP347H stainless steel. Chin J Eng, 2016, 38(Suppl 1): 1
|
[8] |
Guo J, Han S W, Chen X R, et al. Control of non-metallic inclusion plasticity and steel cleanliness for ultrathin 18 pct Cr-8 pct Ni stainless steel strip. Metall Mater Trans B, 2020, 51(4): 1813 doi: 10.1007/s11663-020-01862-4
|
[9] |
張一民, 孫彥輝, 白雪峰, 等. 不銹鋼中夾雜物三維形貌及其熱力學計算. 工程科學學報, 2020, 42(Suppl 1):14
Zhang Y M, Sun Y H, Bai X F, et al. Three-dimensional morphology and thermodynamic calculation of inclusions in stainless steel. Chin J Eng, 2020, 42(Suppl 1): 14
|
[10] |
Okuyama G, Yamaguchi K, Takeuchi S, et al. Effect of slag composition on the kinetics of formation of Al2O3–MgO inclusions in aluminum killed ferritic stainless steel. ISIJ Int, 2000, 40(2): 121 doi: 10.2355/isijinternational.40.121
|
[11] |
Todoroki H, Mizuno K. Effect of silica in slag on inclusion compositions in 304 stainless steel deoxidized with aluminum. ISIJ Int, 2004, 44(8): 1350 doi: 10.2355/isijinternational.44.1350
|
[12] |
李璟宇, 成國光, 李六一, 等. 202不銹鋼中非金屬夾雜物的形成機理. 工程科學學報, 2019, 41(12):1567
Li J Y, Cheng G G, Li L Y, et al. Formation mechanism of non-metallic inclusions in 202 stainless steel. Chin J Eng, 2019, 41(12): 1567
|
[13] |
任英, 張立峰, 楊文. 不銹鋼中夾雜物控制綜述. 煉鋼, 2014, 30(1):71 doi: 10.3969/j.issn.1002-1043.2014.01.018
Ren Y, Zhang L F, Yang W. Review of control of inclusions in stainless steel. Steelmaking, 2014, 30(1): 71 doi: 10.3969/j.issn.1002-1043.2014.01.018
|
[14] |
Li S S, Zhang L F, Ren Y, et al. Transient behavior of inclusions during reoxidation of Si-killed stainless steels in continuous casting tundish. ISIJ Int, 2016, 56(4): 584 doi: 10.2355/isijinternational.ISIJINT-2015-694
|
[15] |
徐海坤, 黃慶周, 謝明耀, 等. 中間包二次氧化對304不銹鋼潔凈度的影響. 中國冶金, 2018, 28(Suppl 1):76 doi: 10.13228/j.boyuan.issn1006-9356.2018s014
Xu H K, Huang Q Z, Xie M Y, et al. Effect of reoxidation on cleanliness of 304 stainless steel in tundish. China Metall, 2018, 28(Suppl 1): 76 doi: 10.13228/j.boyuan.issn1006-9356.2018s014
|
[16] |
付邦豪, 陳超, 成國光, 等. 430不銹鋼冶煉過程的夾雜物. 鋼鐵, 2012, 47(1):40 doi: 10.13228/j.boyuan.issn0449-749x.2012.01.017
Fu B H, Chen C, Cheng G G, et al. Inclusions in 430 stainless steelmaking during AOD-LF-CC process. Iron Steel, 2012, 47(1): 40 doi: 10.13228/j.boyuan.issn0449-749x.2012.01.017
|
[17] |
Goto H, Miyazawa K I. Reoxidation behavior of molten steel in non-killed and Al-killed steels. ISIJ Int, 1998, 38(3): 256 doi: 10.2355/isijinternational.38.256
|
[18] |
Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness. ISIJ Int, 2003, 43(3): 271 doi: 10.2355/isijinternational.43.271
|
[19] |
王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1 doi: 10.13228/j.boyuan.issn0449-749x.2013.09.004
Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.2013.09.004
|
[20] |
Yan P C, van Ende M A, Zinngrebe E, et al. Interaction between steel and distinct gunning materials in the tundish. ISIJ Int, 2014, 54(11): 2551 doi: 10.2355/isijinternational.54.2551
|
[21] |
Kim T S, Chung Y, Holappa L, et al. Effect of rice husk ash insulation powder on the reoxidation behavior of molten steel in continuous casting tundish. Metall Mater Trans B, 2017, 48(3): 1736 doi: 10.1007/s11663-017-0971-3
|
[22] |
Wang F, Liu D X, Liu W, et al. Reoxidation of Al-killed steel by Cr2O3 from tundish cover flux. Metals, 2019, 9(5): 554 doi: 10.3390/met9050554
|
[23] |
朱坦華, 周秋月, 任英, 等. 二次氧化過程IF鋼中間包中夾雜物演變行為. 鋼鐵, 2020, 55(3):35 doi: 10.13228/j.boyuan.issn0449-749x.20190242
Zhu T H, Zhou Q Y, Ren Y, et al. Inclusion evolution in IF steel during tundish reoxidation. Iron Steel, 2020, 55(3): 35 doi: 10.13228/j.boyuan.issn0449-749x.20190242
|
[24] |
Yang G W, Wang X H, Huang F X, et al. Influence of reoxidation in tundish on inclusion for Ca-treated Al-killed steel. Steel Res Int, 2014, 85(5): 784 doi: 10.1002/srin.201300243
|
[25] |
許苗苗, 尚正鴻, 凌海濤, 等. 316L不銹鋼精煉過程中夾雜物成分演變. 煉鋼, 2021, 37(2):16
Xu M M, Shang Z H, Ling H T, et al. Composition evolution of inclusions in 316L stainless steel refining process. Steelmaking, 2021, 37(2): 16
|
[26] |
Jiang M, Wang X H, Chen B, et al. Laboratory study on evolution mechanisms of non-metallic inclusions in high strength alloyed steel refined by high basicity slag. ISIJ Int, 2010, 50(1): 95 doi: 10.2355/isijinternational.50.95
|
[27] |
Yang S F, Wang Q Q, Zhang L F, et al. Formation and modification of MgO·Al2O3-based inclusions in alloy steels. Metall Mater Trans B, 2012, 43(4): 731 doi: 10.1007/s11663-012-9663-1
|
[28] |
Kim J W, Kim S K, Kim D S, et al. Formation mechanism of Ca?Si?Al?Mg?Ti?O inclusions in type 304 stainless steel. ISIJ Int, 1996, 36(Suppl 1): S140
|
[29] |
Yin X, Sun Y H, Yang Y D, et al. Inclusion evolution during refining and continuous casting of 316L stainless steel. Ironmak Steelmak, 2016, 43(7): 533 doi: 10.1080/03019233.2015.1125599
|
[30] |
Li J Y, Cheng G G, Li L Y, et al. The formation mechanism of Mn?Al?O inclusions in Fe?Cr?Mn stainless steel during continuous casting. Steel Res Int, 2018, 89(5): 1700461 doi: 10.1002/srin.201700461
|