<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
WANG Yan-bing, FU Dai-rui, WU Hou-wei, GENG Yan-jie, ZHANG Yao-yao. Dynamic crack propagation characteristics of media with bedding under an impact load[J]. Chinese Journal of Engineering, 2023, 45(5): 701-713. doi: 10.13374/j.issn2095-9389.2022.03.20.001
Citation: WANG Yan-bing, FU Dai-rui, WU Hou-wei, GENG Yan-jie, ZHANG Yao-yao. Dynamic crack propagation characteristics of media with bedding under an impact load[J]. Chinese Journal of Engineering, 2023, 45(5): 701-713. doi: 10.13374/j.issn2095-9389.2022.03.20.001

Dynamic crack propagation characteristics of media with bedding under an impact load

doi: 10.13374/j.issn2095-9389.2022.03.20.001
More Information
  • Corresponding author: E-mail: wangyanbing@cumtb.edu.cn
  • Received Date: 2022-03-20
    Available Online: 2022-05-05
  • Publish Date: 2023-05-01
  • With the gradual development of mines, tunnels, and other underground constructions, theoretical research on the influence of internal defects in rock structure on rock dynamic fracture behavior and related engineering practices are of great importance. In this paper, a digital laser dynamic caustics experimental system is used to conduct three-point bending drop hammer impact tests on three groups of polymethyl methacrylate specimens with different angles of bedding (30°, 45°, and 60°). The fracture process of the specimens and the shape change process of the dynamic caustic speckle at the crack tip were recorded using a high-speed camera. The characteristics of dynamic stress intensity factors Ⅰ and Ⅱ were obtained, and the crack tip displacement and velocity curves were analyzed. Combined with the discrete lattice spring model (DLSM), the fracture morphology of the specimens was analyzed, and the variation law of the stress field and field at the crack tip was obtained. The transmission and reflection characteristics of stress waves were studied at stratification. Finally, the impact of the fracture characteristic stratification parameters of the medium was analyzed using DLSM. The results show that the fracture characteristics of the specimens, the initiation time of the crack, and the propagation speed of the crack in the bedding plane vary with the bedding angle. With increasing bedding angle, the initiation time of the crack advances, the propagation speed of the crack increases along the weak bedding plane after extending to the bedding plane, and the crack is more inclined to extend along the weak bedding plane to complete specimen fracture. With the crack expansion, the type Ⅱ stress intensity factor appears, and the specimen fracture shows the characteristics of tension–shear composite failure. Before arriving at a particular bedding speed, cracks fluctuate up and down, and attenuation in the aftermath of the bedding generally has lower volatility change; the elastic modulus and bedding thickness affect the dynamic fracture characteristics of the specimens. If the bedding elastic modulus is less than 0.1 GPa, the crack extension in the bedding plane distance increases with the elastic modulus. If it is more than 0.1 GPa, when the bedding for the organic glass bonding effect increases, the crack goes directly through the bedding. The propagation distance of cracks along the weak plane of the bedding increases with the bedding thickness.

     

  • loading
  • [1]
    李地元, 萬千榮, 朱泉企, 等. 不同加載方式下含預制裂隙巖石力學特性及破壞規律試驗研究. 采礦與安全工程學報, 2021, 38(5):1025

    Li D Y, Wan Q R, Zhu Q Q, et al. Experimental study on mechanical properties and failure behaviour of fractured rocks under different loading methods. J Min &Saf Eng, 2021, 38(5): 1025
    [2]
    王奇智, 夏開文, 吳幫標, 等. 預制平行雙節理類巖石材料板動態破壞試驗研究. 天津大學學報(自然科學與工程技術版), 2019, 52(10):1099

    Wang Q Z, Xia K W, Wu B B, et al. Dynamic failure of simulated rock mass plate containing two parallel cracks. J Tianjin Univ (Sci Technol), 2019, 52(10): 1099
    [3]
    劉曉輝, 戴峰, 劉建鋒, 等. 考慮層理方向煤巖的靜動巴西劈裂試驗研究. 巖石力學與工程學報, 2015, 34(10):2098 doi: 10.13722/j.cnki.jrme.2015.0608

    Liu X H, Dai F, Liu J F, et al. Brazilian splitting tests on coal rock considering bedding direction under static and dynamic loading rate. Chin J Rock Mech Eng, 2015, 34(10): 2098 doi: 10.13722/j.cnki.jrme.2015.0608
    [4]
    李超, 劉紅巖, 閻錫東. 動載下節理巖體破壞過程的數值試驗研究. 巖土力學, 2015, 36(Suppl 2):655 doi: 10.16285/j.rsm.2015.S2.093

    Li C, Liu H Y, Yan X D. Numerical experiment of failure process of jointed rock mass under dynamic loading. Rock Soil Mech, 2015, 36(Suppl 2): 655 doi: 10.16285/j.rsm.2015.S2.093
    [5]
    Wu Y K, Hao H, Zhou Y X, et al. Propagation characteristics of blast-induced shock waves in a jointed rock mass. Soil Dyn Earthq Eng, 1998, 17(6): 407 doi: 10.1016/S0267-7261(98)00030-X
    [6]
    廖志毅, 梁正召, 楊岳峰, 等. 刀具動態作用下節理巖體破壞過程的數值模擬. 巖土工程學報, 2013, 35(6):1147

    Liao Z Y, Liang Z Z, Yang Y F, et al. Numerical simulation of fragmentation process of jointed rock mass induced by a drill bit under dynamic loading. Chin J Geotech Eng, 2013, 35(6): 1147
    [7]
    Cai J G, Zhao J. Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses. Int J Rock Mech Min Sci, 2000, 37(4): 661 doi: 10.1016/S1365-1609(00)00013-7
    [8]
    李夕兵, 王衛華, 馬春德. 不同頻率載荷作用下的巖石節理本構模型. 巖石力學與工程學報, 2007, 26(2):247 doi: 10.3321/j.issn:1000-6915.2007.02.004

    Li X B, Wang W H, Ma C D. Constitutive model of rock joints under compression loads with different frequencies. Chin J Rock Mech Eng, 2007, 26(2): 247 doi: 10.3321/j.issn:1000-6915.2007.02.004
    [9]
    Li J C, Ma G W. Experimental study of stress wave propagation across a filled rock joint. Int J Rock Mech Min Sci, 2009, 46(3): 471 doi: 10.1016/j.ijrmms.2008.11.006
    [10]
    Wang Y B, Yang R S. Study of the dynamic fracture characteristics of coal with a bedding structure based on the NSCB impact test. Eng Fract Mech, 2017, 184: 319 doi: 10.1016/j.engfracmech.2017.09.006
    [11]
    李淼, 喬蘭, 李慶文. 高應變率下預制單節理巖石SHPB劈裂試驗能量耗散分析. 巖土工程學報, 2017, 39(7):1336 doi: 10.11779/CJGE201707021

    Li M, Qiao L, Li Q W. Energy dissipation of rock specimens under high strain rate with single joint in SHPB tensile tests. Chin J Geotech Eng, 2017, 39(7): 1336 doi: 10.11779/CJGE201707021
    [12]
    李娜娜, 李建春, 李海波, 等. 節理接觸面對應力波傳播影響的SHPB試驗研究. 巖石力學與工程學報, 2015, 34(10):1994 doi: 10.13722/j.cnki.jrme.2015.0419

    Li N N, Li J C, Li H B, et al. Shpb experiment on influence of contact area of joints on propagation of stress wave. Chin J Rock Mech Eng, 2015, 34(10): 1994 doi: 10.13722/j.cnki.jrme.2015.0419
    [13]
    楊立云, 張勇進, 孫金超, 等. 偏置裂紋對含雙裂紋PMMA試件動態斷裂影響效應研究. 礦業科學學報, 2017, 2(4):330

    Yang L Y, Zhang Y J, Sun J C, et al. The effect of offset distance on dynamic fracture behavior of PMMA with double cracks. J Min Sci Technol, 2017, 2(4): 330
    [14]
    Siegmund T, Fleck N A, Needleman A. Dynamic crack growth across an interface. Int J Fract, 1997, 85(4): 381 doi: 10.1023/A:1007460509387
    [15]
    Sundaram B M, Tippur H V. Dynamics of crack penetration vs branching at a weak interface: An experimental study. J Mech Phys Solids, 2016, 96: 312 doi: 10.1016/j.jmps.2016.07.020
    [16]
    李地元, 韓震宇, 孫小磊, 等. 含預制裂隙大理巖SHPB動態力學破壞特性試驗研究. 巖石力學與工程學報, 2017, 36(12):2872

    Li D Y, Han Z Y, Sun X L, et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests. Chin J Rock Mech Eng, 2017, 36(12): 2872
    [17]
    韓震宇, 李地元, 朱泉企, 等. 含端部裂隙大理巖單軸壓縮破壞及能量耗散特性. 工程科學學報, 2020, 42(12):1588

    Han Z Y, Li D Y, Zhu Q Q, et al. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface. Chin J Eng, 2020, 42(12): 1588
    [18]
    楊陽, 楊仁樹. 高應變率下紅砂巖“凍傷效應”. 工程科學學報, 2019, 41(10):1249

    Yang Y, Yang R S. “Frostbite effect”of red sandstone under high strain rates. Chin J Eng, 2019, 41(10): 1249
    [19]
    Wang Y. Development and application of the new explosive loading experimental system of digital laser dynamic caustics. J Test Eval, 2017, 46(2): 20160244 doi: 10.1520/JTE20160244
    [20]
    Yang R S, Xu P, Yue Z W, et al. Dynamic fracture analysis of crack-defect interaction for mode I running crack using digital dynamic caustics method. Eng Fract Mech, 2016, 161: 63 doi: 10.1016/j.engfracmech.2016.04.042
    [21]
    楊仁樹, 王雁冰, 侯麗冬, 等. 沖擊荷載下缺陷介質裂紋擴展的DLDC試驗. 巖石力學與工程學報, 2014, 33(10):1971

    Yang R S, Wang Y B, Hou L D, et al. Dldc experiment on crack propagation in defective medium under impact loading. Chin J Rock Mech Eng, 2014, 33(10): 1971
    [22]
    Zhao G F. Development of Micro-macro Continuum-discontinuum Coupled Numerical Method [Dissertation]. Lausanne: École Polytechnique Fédérale de Lausanne, 2010
    [23]
    Zhao G F, Fang J N, Zhao J. A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Anal Methods Geomech, 2011, 35(8): 859 doi: 10.1002/nag.930
    [24]
    Zhao Y X, Zhao G F, Jiang Y D, et al. Effects of bedding on the dynamic indirect tensile strength of coal: Laboratory experiments and numerical simulation. Int J Coal Geol, 2014, 132: 81 doi: 10.1016/j.coal.2014.08.007
    [25]
    Wang Y B, Yang R S, Zhao G F. Influence of empty hole on crack running in PMMA plate under dynamic loading. Polym Test, 2017, 58: 70 doi: 10.1016/j.polymertesting.2016.11.020
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(15)

    Article views (635) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164