Citation: | HUANG Qiao-feng, PAN Rui-mei, PENG Han-dong, WANG Yi-qi, SHI Xiao-yan, CAI Jun-jie, SHAO Lian-yi, SUN Zhi-peng. Application of vanadium phosphate in aqueous zinc-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(7): 1175-1186. doi: 10.13374/j.issn2095-9389.2022.03.19.002 |
[1] |
Peng M K, Wang L, Li L B, et al. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. eScience, 2021, 1(1): 83 doi: 10.1016/j.esci.2021.09.004
|
[2] |
Zhou T, Zhu L M, Xie L L, et al. Cathode materials for aqueous zinc-ion batteries: A mini review. J Colloid Interface Sci, 2022, 605: 828 doi: 10.1016/j.jcis.2021.07.138
|
[3] |
Xu S F, Dai H C, Zhu S L, et al. A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. eScience, 2021, 1(1): 60 doi: 10.1016/j.esci.2021.08.002
|
[4] |
Dong Y, Miao L C, Ma G Q, et al. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem Sci, 2021, 12(16): 5843 doi: 10.1039/D0SC06734B
|
[5] |
Su Q S, Rong Y, Chen H Z, et al. Carbon-doped vanadium nitride used as a cathode of high-performance aqueous zinc ion batteries. Ind Eng Chem Res, 2021, 60(33): 12155 doi: 10.1021/acs.iecr.1c01915
|
[6] |
Bin D, Wang Y R, Tamirat A G, et al. Stable high-voltage aqueous zinc battery based on carbon-coated NaVPO4F cathode. ACS Sustainable Chem Eng, 2021, 9(8): 3223 doi: 10.1021/acssuschemeng.0c08651
|
[7] |
Wang X Y, Ma L W, Zhang P C, et al. Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Appl Surf Sci, 2020, 502: 144207 doi: 10.1016/j.apsusc.2019.144207
|
[8] |
Tang B Y, Shan L T, Liang S Q, et al. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci, 2019, 12(11): 3288 doi: 10.1039/C9EE02526J
|
[9] |
Wan F, Zhou X Z, Lu Y, et al. Energy storage chemistry in aqueous zinc metal batteries. ACS Energy Lett, 2020, 5(11): 3569 doi: 10.1021/acsenergylett.0c02028
|
[10] |
衡永麗, 谷振一, 郭晉芝, 等. 水系鋅離子電池用釩基正極材料的研究進展. 物理化學學報, 2021, 37(3):17
Heng Y L, Gu Z Y, Guo J Z, et al. Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries. Acta Phys Chimica Sin, 2021, 37(3): 17
|
[11] |
翟小亮, 柳勇, 王飛, 等. 水基鋅離子電池釩基正極材料研究進展. 化學工業與工程, 2020, 37(5):37
Zhai X L, Liu Y, Wang F, et al. Recent progress of vanadium-based cathode materials for rechargeable aqueous zinc-ion batteries. Chem Ind Eng, 2020, 37(5): 37
|
[12] |
Fang G Z, Zhou J, Pan A Q, et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett, 2018, 3(10): 2480 doi: 10.1021/acsenergylett.8b01426
|
[13] |
Wan F, Niu Z Q. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed, 2019, 58(46): 16358 doi: 10.1002/anie.201903941
|
[14] |
Li W, Jing X Y, Jiang K, et al. Observation of structural decomposition of Na3V2(PO4)3 and Na3V2(PO4)2F3 as cathodes for aqueous Zn-ion batteries. ACS Appl Energy Mater, 2021, 4(3): 2797 doi: 10.1021/acsaem.1c00067
|
[15] |
Zhang N, Chen X Y, Yu M, et al. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev, 2020, 49(13): 4203 doi: 10.1039/C9CS00349E
|
[16] |
Dong Y, Jia M, Wang Y Y, et al. Long-life zinc/vanadium pentoxide battery enabled by a concentrated aqueous ZnSO4 electrolyte with proton and zinc ion co-intercalation. ACS Appl Energy Mater, 2020, 3(11): 11183 doi: 10.1021/acsaem.0c02126
|
[17] |
Lin X D, Zhou G D, Liu J P, et al. Bifunctional hydrated gel electrolyte for long-cycling Zn-ion battery with NASICON-type cathode. Adv Funct Mater, 2021, 31(42): 2105717 doi: 10.1002/adfm.202105717
|
[18] |
Liu N, Li B, He Z X, et al. Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J Energy Chem, 2021, 59: 134 doi: 10.1016/j.jechem.2020.10.044
|
[19] |
Zhang N, Cheng F Y, Liu Y C, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc, 2016, 138(39): 12894 doi: 10.1021/jacs.6b05958
|
[20] |
Xu C W, Yang Z W, Zhang X K, et al. Prussian blue analogues in aqueous batteries and desalination batteries. Nanomicro Lett, 2021, 13(1): 166
|
[21] |
Liu Z, Pulletikurthi G, Endres F. A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl Mater Interfaces, 2016, 8(19): 12158 doi: 10.1021/acsami.6b01592
|
[22] |
戴宇航, 甘志偉, 阮雨杉, 等. 水系鋅離子電池及關鍵材料研究進展. 硅酸鹽學報, 2021, 49(7):1323
Dai Y H, Gan Z W, Ruan Y S, et al. Research progress of aqueous zinc ion batteries and their key materials. J Chin Ceram Soc, 2021, 49(7): 1323
|
[23] |
Ouyang B, Wang J Y, He T J, et al. Synthetic accessibility and stability rules of NASICONs. Nat Commun, 2021, 12: 5752 doi: 10.1038/s41467-021-26006-3
|
[24] |
Wang M Y, Zhao X X, Guo J Z, et al. Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3?x(P2O7)x cathode material. Green Energy Environ, 2022, 7(4): 763 doi: 10.1016/j.gee.2020.11.026
|
[25] |
Liu Z X, Yang Q, Wang D H, et al. A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv Energy Mater, 2019, 9(46): 1902473 doi: 10.1002/aenm.201902473
|
[26] |
Hu F D, Jiang X L. Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries. Inorg Chem Commun, 2021, 129: 108653 doi: 10.1016/j.inoche.2021.108653
|
[27] |
Wu Z Y, Lu C J, Ye F, et al. Bilayered VOPO4·2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv Funct Mater, 2021, 31(45): 2106816 doi: 10.1002/adfm.202106816
|
[28] |
Cao L S, Li D, Soto F A, et al. Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew Chem Int Ed, 2021, 60(34): 18845 doi: 10.1002/anie.202107378
|
[29] |
Li C C, Wu W L, Shi H Y, et al. The energy storage behavior of a phosphate-based cathode material in rechargeable zinc batteries. Chem Commun, 2021, 57(51): 6253 doi: 10.1039/D1CC00584G
|
[30] |
Yang X, Deng W Z, Chen M, et al. Mass-producible, quasi-zero-strain, lattice-water-rich inorganic open-frameworks for ultrafast-charging and long-cycling zinc-ion batteries. Adv Mater, 2020, 32(45): 2003592 doi: 10.1002/adma.202003592
|
[31] |
Zhao H B, Hu C J, Cheng H W, et al. Novel rechargeable M3V2(PO4)3//zinc (M = Li, Na) hybrid aqueous batteries with excellent cycling performance. Sci Rep, 2016, 6: 25809 doi: 10.1038/srep25809
|
[32] |
Duan W C, Hu Z, Zhang K, et al. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale, 2013, 5(14): 6485 doi: 10.1039/c3nr01617j
|
[33] |
S?rensen D R, Mathiesen J K, Ravnsb?k D B. Dynamic charge-discharge phase transitions in Li3V2(PO4)3 cathodes. J Power Sources, 2018, 396: 437 doi: 10.1016/j.jpowsour.2018.06.023
|
[34] |
Li C X, Yuan W T, Li C, et al. Boosting Li3V2(PO4)3 cathode stability using a concentrated aqueous electrolyte for high-voltage zinc batteries. Chem Commun, 2021, 57(35): 4319 doi: 10.1039/D0CC08115A
|
[35] |
Wang F, Hu E Y, Sun W, et al. A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ Sci, 2018, 11(11): 3168 doi: 10.1039/C8EE01883A
|
[36] |
Chen Y J, Xu Y L, Sun X F, et al. Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J Power Sources, 2018, 378: 423 doi: 10.1016/j.jpowsour.2017.12.073
|
[37] |
Park M J, Yaghoobnejad Asl H, Therese S, et al. Structural impact of Zn-insertion into monoclinic V2(PO4)3: Implications for Zn-ion batteries. J Mater Chem A, 2019, 7(12): 7159 doi: 10.1039/C9TA00716D
|
[38] |
Chen M Z, Hua W B, Xiao J, et al. Development and investigation of a NASICON-type high-voltage cathode material for high-power sodium-ion batteries. Angew Chem Int Ed, 2020, 59(6): 2449 doi: 10.1002/anie.201912964
|
[39] |
Ko J S, Paul P P, Wan G, et al. NASICON Na3V2(PO4)3 enables quasi-two-stage Na+ and Zn2+ intercalation for multivalent zinc batteries. Chem Mater, 2020, 32(7): 3028 doi: 10.1021/acs.chemmater.0c00004
|
[40] |
Hu P, Zhu T, Wang X P, et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy, 2019, 58: 492 doi: 10.1016/j.nanoen.2019.01.068
|
[41] |
衡永麗, 谷振一, 郭晉芝, 等. Na3V2(PO4)3@C用作水系鋅離子電池正極材料的研究. 儲能科學與技術, 2021, 10(3):938
Heng Y L, Gu Z Y, Guo J Z, et al. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries. Energy Storage Sci Technol, 2021, 10(3): 938
|
[42] |
Li G L, Yang Z, Jiang Y, et al. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J Power Sources, 2016, 308: 52 doi: 10.1016/j.jpowsour.2016.01.058
|
[43] |
Yahmed S E, Ayed M, Zid M F, et al. β-K(VO2)2(PO4). Acta Cryst, 2013, E69: i2
|
[44] |
Xiong P, Zhang F, Zhang X Y, et al. Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nat Commun, 2020, 11(1): 3297 doi: 10.1038/s41467-020-17014-w
|
[45] |
Hu L F, Wu Z Y, Lu C J, et al. Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ Sci, 2021, 14(7): 4095 doi: 10.1039/D1EE01158H
|
[46] |
Shi H Y, Song Y, Qin Z M, et al. Inhibiting VOPO4·xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew Chem Int Ed, 2019, 58(45): 16057 doi: 10.1002/anie.201908853
|
[47] |
Shi H Y, Wu W L, Yang X P, et al. Accessing the 2 V VV/VIV redox process of vanadyl phosphate cathode for aqueous batteries. J Power Sources, 2021, 507: 230270 doi: 10.1016/j.jpowsour.2021.230270
|
[48] |
Park M J, Manthiram A. Unveiling the charge storage mechanism in nonaqueous and aqueous Zn/Na3V2(PO4)2F3 batteries. ACS Appl Energy Mater, 2020, 3(5): 5015 doi: 10.1021/acsaem.0c00505
|
[49] |
Ni Q, Jiang H, Sandstrom S, et al. A Na3V2(PO4)2O1.6F1. 4 cathode of Zn-ion battery enabled by a water-in-bisalt electrolyte. Adv Funct Mater, 2020, 30(36): 2003511 doi: 10.1002/adfm.202003511
|
[50] |
Jamesh M I, Prakash A S. Advancement of technology towards developing Na-ion batteries. J Power Sources, 2018, 378: 268 doi: 10.1016/j.jpowsour.2017.12.053
|
[51] |
Li W, Wang K L, Cheng S J, et al. A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater, 2018, 15: 14 doi: 10.1016/j.ensm.2018.03.003
|
[52] |
Gu Z Y, Guo J Z, Cao J M, et al. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv Mater, 2022, 34(14): 2110108 doi: 10.1002/adma.202110108
|
[53] |
Ling M X, Lv Z Q, Li F, et al. Revisiting of tetragonal NaVPO4F: A high energy density cathode for sodium-ion batteries. ACS Appl Mater Interfaces, 2020, 12(27): 30510 doi: 10.1021/acsami.0c08846
|
[54] |
Jin T, Liu Y C, Li Y, et al. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries. Adv Energy Mater, 2017, 7(15): 1700087 doi: 10.1002/aenm.201700087
|
[55] |
Mamoor M, Lian R Q, Wang D S, et al. Structure, charge transfer, and kinetic properties of NaVPO4F with Na+ extraction: A comprehensive first-principles study. Phys Chem Chem Phys, 2019, 21(27): 14612 doi: 10.1039/C9CP01819K
|