Citation: | ZHANG Rui-fang, XU Ji, FENG Xin-ming, ZHAO Fan, ZHANG Zhi-hao. Effect of the aging process on the yield ratio of 6013 aluminum alloy extruded profile[J]. Chinese Journal of Engineering, 2023, 45(4): 569-576. doi: 10.13374/j.issn2095-9389.2022.01.25.001 |
[1] |
Marioara C, B?rvik T, Hopperstad O. The relation between grain boundary precipitate formation and adjacent grain orientations in Al–Mg–Si (-Cu) alloys. Philos Mag Lett, 2021, 101(9): 1
|
[2] |
Zhu S, Li Z H, Yan L Z, et al. Transformation behavior of precipitates during artificial aging at 170℃ in Al–Mg–Si-Cu alloys with and without Zn addition. Rare Met, 2021, 40(7): 1907 doi: 10.1007/s12598-020-01427-z
|
[3] |
馮銀成, 李落星, 劉杰, 等. 自然時效對6061鋁合金顯微組織和力學性能的影響. 機械工程材料, 2011, 35(3):18
Feng Y C, Li L X, Liu J, et al. Effect of natural aging on microstructure and mechanical properties of 6061 aluminum alloy. Mater Mech Eng, 2011, 35(3): 18
|
[4] |
李寶綿, 柯奇, 張海濤, 等. 高強耐熱6×××系鋁合金的研究現狀及其發展趨勢. 輕合金加工技術, 2021, 49(5):8 doi: 10.13979/j.1007-7235.2021.05.002
Li B M, Ke Q, Zhang H T, et al. Research status and development trend of high strength and heat-resistant 6 × × × series aluminum alloys. Light Alloy Fabr Technol, 2021, 49(5): 8 doi: 10.13979/j.1007-7235.2021.05.002
|
[5] |
孫亮, 劉兆偉, 張宇, 等. Mg和Si質量比對6系鋁合金性能的影響. 有色金屬材料與工程, 2020, 41(2):35
Sun L, Liu Z W, Zhang Y, et al. Effect of mass ratio of Mg to Si on the properties of 6 series aluminum alloys. Nonferrous Met Mater Eng, 2020, 41(2): 35
|
[6] |
Wang X F, Liu H, Tang X B. A comparison study of microstructure, texture and mechanical properties between two 6xxx aluminum alloys. Metall Res Technol, 2021, 118(2): 211 doi: 10.1051/metal/2021013
|
[7] |
范文麗, 鄭亞亞, 柏振海, 等. 單級時效和形變熱處理對新型Al–Mg–Si合金(Mg/Si=1.15)性能的影響. 材料熱處理學報, 2016, 37(6):82
Fan W L, Zheng Y Y, Bo Z H, et al. Effect of single-stage aging and thermo-mechanical treatment on properties of an Al–Mg–Si aluminum alloy(Mg/Si=1.15). Trans Mater Heat Treat, 2016, 37(6): 82
|
[8] |
邱楚, 郭世杰, 紀艷麗. 6061鋁合金均勻化過程中AlMnSi彌散顆粒的析出尺寸對再結晶行為的影響. 金屬熱處理, 2020, 45(8):27 doi: 10.13251/j.issn.0254-6051.2020.08.006
Qiu C, Guo S J, Ji Y L. Effect of AlMnSi dispersion particle size on recrystallization of 6061 aluminum alloy during homogenization. Heat Treat Met, 2020, 45(8): 27 doi: 10.13251/j.issn.0254-6051.2020.08.006
|
[9] |
李輝, 李鑄鐵, 晉宏炎, 等. 預時效及烤漆硬化處理對6016鋁合金顯微組織及硬度的影響. 金屬熱處理, 2017, 42(11):148 doi: 10.13251/j.issn.0254-6051.2017.11.029
Li H, Li Z T, Jin H Y, et al. Influence of pre-aging and bake hardening on microstructure and hardness of 6016 aluminum alloy. Heat Treat Met, 2017, 42(11): 148 doi: 10.13251/j.issn.0254-6051.2017.11.029
|
[10] |
王鑫, 劉春鵬, 呂海波, 等. 回歸再時效對6082合金組織及電化學腐蝕性的影響. 特種鑄造及有色合金, 2019, 39(1):84 doi: 10.15980/j.tzzz.2019.01.023
Wang X, Liu C P, Lü H B, et al. Effects of retrogression reaging on microstructure and electrochemical corrosion resistance of 6082 aluminum alloy. Special Cast &Nonferrous Alloys, 2019, 39(1): 84 doi: 10.15980/j.tzzz.2019.01.023
|
[11] |
魏玉. 時效時間對汽車用6063鋁合金組織與力學性能的影響. 熱加工工藝, 2020, 49(14):134 doi: 10.14158/j.cnki.1001-3814.20192766
Wei Y. Effects of aging time on microstructure and mechanical properties of 6063 aluminum alloy for automobile. Hot Work Technol, 2020, 49(14): 134 doi: 10.14158/j.cnki.1001-3814.20192766
|
[12] |
商寶川, 尹志民, 周向, 等. 固溶-時效對6082合金擠壓棒材組織性能的影響. 材料熱處理學報, 2011, 32(1):77 doi: 10.13289/j.issn.1009-6264.2011.01.015
Shang B C, Yin Z M, Zhou X, et al. Effect of solution and aging treatment on microstructure and properties of hot extruded 6082 aluminum alloy bars. Trans Mater Heat Treat, 2011, 32(1): 77 doi: 10.13289/j.issn.1009-6264.2011.01.015
|
[13] |
Kim Y, Mishra R K, Sachdev A K, et al. A combined experimental-analytical modeling study of the artificial aging response of Al–Mg–Si alloys. Mater Sci Eng A, 2021, 820: 141566 doi: 10.1016/j.msea.2021.141566
|
[14] |
Khangholi S N, Javidani M, Maltais A, et al. Effects of natural aging and pre-aging on the strength and electrical conductivity in Al–Mg–Si AA6201 conductor alloys. Mater Sci Eng A, 2021, 820: 141538 doi: 10.1016/j.msea.2021.141538
|
[15] |
Yildiz R A, Yilmaz S. Stress-strain properties of artificially aged 6061 Al alloy: Experiments and modeling. J Mater Eng Perform, 2020, 29(9): 5764 doi: 10.1007/s11665-020-05080-6
|
[16] |
劉剛, 張國君, 丁向東, 等. 具有盤/片狀, 棒/針狀析出相鋁合金的時效-屈服強度變化模型. 稀有金屬材料與工程, 2003, 32(12):971 doi: 10.3321/j.issn:1002-185X.2003.12.002
Liu G, Zhang G J, Ding X D, et al. A model for age strengthening of Al alloys with plate/disc-like or rod/needle-like precipitate. Rare Met Mater Eng, 2003, 32(12): 971 doi: 10.3321/j.issn:1002-185X.2003.12.002
|
[17] |
任智煒, 羅兵輝, 鄭亞亞, 等. Mg、Si含量對Al–Mg–Si合金顯微組織與性能的影響. 材料導報, 2019, 33(18):3072 doi: 10.11896/cldb.18070193
Ren Z W, Luo B H, Zheng Y Y, et al. Effect of Mg and Si content on microstructure and property of Al–Mg–Si alloy. Mater Rep, 2019, 33(18): 3072 doi: 10.11896/cldb.18070193
|
[18] |
艾世杰, 陳康敏, 許曉靜, 等. 時效對鋯-鍶復合微合金化6013鋁合金性能的影響. 金屬熱處理, 2013, 38(6):71 doi: 10.13251/j.issn.0254-6051.2013.06.030
Ai S J, Chen K M, Xu X J, et al. Effect of aging on properties of Zr-Sr microalloyed 6013 aluminum alloy. Heat Treat Met, 2013, 38(6): 71 doi: 10.13251/j.issn.0254-6051.2013.06.030
|
[19] |
Braun R. Investigations on the long-term stability of 6013-T6 sheet. Mater Charact, 2006, 56(2): 85 doi: 10.1016/j.matchar.2005.03.006
|
[20] |
張國鵬. 熱處理工藝對新型6XXX系鋁合金組織與性能的影響[學位論文]. 長沙: 中南大學, 2010
Zhang G P. Effect of Heat Treatment Process on Microstructure and Properties of New 6XXX Series Aluminum Alloy. [Dissertation]. Changsha: Central South University, 2010
|
[21] |
Miao W, Laughlin D. Effects of Cu content and preaging on precipitation characteristics in Aluminum alloy 6022. Metall Mater Trans A, 2012, 31(2): 361
|
[22] |
杜鵬, 閆曉東, 李彥利, 等. 6061鋁合金中富鐵相在均勻化過程中的相變機理. 中國有色金屬學報, 2011, 21(5):981 doi: 10.19476/j.ysxb.1004.0609.2011.05.007
Du P, Yan X D, Li Y L, et al. Transformation mechanism of iron-rich phase in 6061 aluminum alloy during homogenization. Chin J Nonferrous Met, 2011, 21(5): 981 doi: 10.19476/j.ysxb.1004.0609.2011.05.007
|
[23] |
馬思怡, 張偉健, 蘇睿明, 等. 7xxx系鋁合金回歸再時效的研究現狀. 有色金屬科學與工程, 2022, 13(2):38 doi: 10.13264/j.cnki.ysjskx.2022.02.006
Ma S Y, Zhang W J, Su R M, et al. Research status of regression and reaging on 7xxx series aluminum alloy. Nonferrous Met Sci Eng, 2022, 13(2): 38 doi: 10.13264/j.cnki.ysjskx.2022.02.006
|
[24] |
丁鳳娟, 賈向東, 洪騰蛟, 等. 不同熱處理工藝對6061鋁合金塑性和硬度的影響. 材料導報, 2021, 35(8):8108 doi: 10.11896/cldb.19120115
Ding F J, Jia X D, Hong T J, et al. Influence of different heat treatment processes on plasticity and hardness of 6061 aluminum alloy. Mater Rep, 2021, 35(8): 8108 doi: 10.11896/cldb.19120115
|
[25] |
Engler O, Marioara C D, Aruga Y, et al. Effect of natural ageing or pre-ageing on the evolution of precipitate structure and strength during age hardening of Al–Mg–Si alloy AA 6016. Mater Sci Eng A, 2019, 759: 520 doi: 10.1016/j.msea.2019.05.073
|
[26] |
寧愛林, 孫瑜, 黃繼武. 不同時效工藝對6063鋁合金組織和力學性能的影響. 機械工程材料, 2013, 37(3):28
Ning A L, Sun Y, Huang J W. Effects of different ageing processes on microstructure and mechanical properties of 6063Aluminum alloy. Mater Mech Eng, 2013, 37(3): 28
|
[27] |
Bahrami A, Miroux A, Sietsma J. An age-hardening model for Al–Mg–Si alloys considering needle-shaped precipitates. Metall Mater Trans, 2012, 43(11): 4445 doi: 10.1007/s11661-012-1211-8
|