<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
ZHANG Rui-fang, XU Ji, FENG Xin-ming, ZHAO Fan, ZHANG Zhi-hao. Effect of the aging process on the yield ratio of 6013 aluminum alloy extruded profile[J]. Chinese Journal of Engineering, 2023, 45(4): 569-576. doi: 10.13374/j.issn2095-9389.2022.01.25.001
Citation: ZHANG Rui-fang, XU Ji, FENG Xin-ming, ZHAO Fan, ZHANG Zhi-hao. Effect of the aging process on the yield ratio of 6013 aluminum alloy extruded profile[J]. Chinese Journal of Engineering, 2023, 45(4): 569-576. doi: 10.13374/j.issn2095-9389.2022.01.25.001

Effect of the aging process on the yield ratio of 6013 aluminum alloy extruded profile

doi: 10.13374/j.issn2095-9389.2022.01.25.001
More Information
  • Corresponding author: E-mail: ntzzh2279@163.com
  • Received Date: 2022-01-25
    Available Online: 2022-07-29
  • Publish Date: 2023-04-01
  • Because of its high strength and good fracture toughness, 6013 aluminum alloy is widely used in auto and aircraft parts, such as the outer hood, outer decklid, and outer fuselage skin. An aluminum alloy must have good plastic forming ability in forming auto and aircraft parts and must have high deformation resistance in service. These performance requirements mainly depend on the yield ratio, that is, the ratio of yield strength to tensile strength. A lower yield ratio means larger deformation from the start of plastic deformation to the final fracture, which benefits formability. A higher yield ratio means higher plastic deformation resistance, which benefits service safety. In this paper, the mechanical properties and microstructure of the extruded 6013 aluminum alloy after natural aging, artificial aging, and retrogression re-aging are studied using microhardness tests, tensile tests, scanning electron microscopy, and transmission electron microscopy. The samples after the solid solution were naturally aged at room temperature and artificially aged at 170, 180, and 190 °C to determine the peak aging time. Then, after natural peak aging, the samples were heat-treated using the retrogression and re-aging process (retrogression at 200/210 °C for 0.5 h and re-aging at 170 °C). The results show that the tensile strength was 286 MPa, the yield strength was 158 MPa, and the yield ratio was 0.54 after natural peak aging for 16 d, which is suitable for plastic forming. The tensile strength was 362 MPa, the yield strength was 336 MPa, and the yield ratio reached 0.92 after the retrogression and re-aging process (retrogression at 210 °C for 0.5 h and peak re-aging at 170 °C for 2 h); the plastic deformation resistance was considerably enhanced. Compared with single-stage artificial aging, retrogression and re-aging can enhance the yield strength of 6013 aluminum alloy more substantially to break through the yield ratio limit in single-stage aging. Because the size of the precipitated phase decreases and the number density increases considerably after retrogression and re-aging, the precipitation strengthening effect is considerably enhanced. Precipitation strengthening has different effects on yield strength and tensile strength, so the yield strength ratio can be regulated by aging heat treatment. In other words, the plastic deformation and anti-deformation abilities of the alloy can be improved by natural peak aging and the retrogression and re-aging process, respectively.

     

  • loading
  • [1]
    Marioara C, B?rvik T, Hopperstad O. The relation between grain boundary precipitate formation and adjacent grain orientations in Al–Mg–Si (-Cu) alloys. Philos Mag Lett, 2021, 101(9): 1
    [2]
    Zhu S, Li Z H, Yan L Z, et al. Transformation behavior of precipitates during artificial aging at 170℃ in Al–Mg–Si-Cu alloys with and without Zn addition. Rare Met, 2021, 40(7): 1907 doi: 10.1007/s12598-020-01427-z
    [3]
    馮銀成, 李落星, 劉杰, 等. 自然時效對6061鋁合金顯微組織和力學性能的影響. 機械工程材料, 2011, 35(3):18

    Feng Y C, Li L X, Liu J, et al. Effect of natural aging on microstructure and mechanical properties of 6061 aluminum alloy. Mater Mech Eng, 2011, 35(3): 18
    [4]
    李寶綿, 柯奇, 張海濤, 等. 高強耐熱6×××系鋁合金的研究現狀及其發展趨勢. 輕合金加工技術, 2021, 49(5):8 doi: 10.13979/j.1007-7235.2021.05.002

    Li B M, Ke Q, Zhang H T, et al. Research status and development trend of high strength and heat-resistant 6 × × × series aluminum alloys. Light Alloy Fabr Technol, 2021, 49(5): 8 doi: 10.13979/j.1007-7235.2021.05.002
    [5]
    孫亮, 劉兆偉, 張宇, 等. Mg和Si質量比對6系鋁合金性能的影響. 有色金屬材料與工程, 2020, 41(2):35

    Sun L, Liu Z W, Zhang Y, et al. Effect of mass ratio of Mg to Si on the properties of 6 series aluminum alloys. Nonferrous Met Mater Eng, 2020, 41(2): 35
    [6]
    Wang X F, Liu H, Tang X B. A comparison study of microstructure, texture and mechanical properties between two 6xxx aluminum alloys. Metall Res Technol, 2021, 118(2): 211 doi: 10.1051/metal/2021013
    [7]
    范文麗, 鄭亞亞, 柏振海, 等. 單級時效和形變熱處理對新型Al–Mg–Si合金(Mg/Si=1.15)性能的影響. 材料熱處理學報, 2016, 37(6):82

    Fan W L, Zheng Y Y, Bo Z H, et al. Effect of single-stage aging and thermo-mechanical treatment on properties of an Al–Mg–Si aluminum alloy(Mg/Si=1.15). Trans Mater Heat Treat, 2016, 37(6): 82
    [8]
    邱楚, 郭世杰, 紀艷麗. 6061鋁合金均勻化過程中AlMnSi彌散顆粒的析出尺寸對再結晶行為的影響. 金屬熱處理, 2020, 45(8):27 doi: 10.13251/j.issn.0254-6051.2020.08.006

    Qiu C, Guo S J, Ji Y L. Effect of AlMnSi dispersion particle size on recrystallization of 6061 aluminum alloy during homogenization. Heat Treat Met, 2020, 45(8): 27 doi: 10.13251/j.issn.0254-6051.2020.08.006
    [9]
    李輝, 李鑄鐵, 晉宏炎, 等. 預時效及烤漆硬化處理對6016鋁合金顯微組織及硬度的影響. 金屬熱處理, 2017, 42(11):148 doi: 10.13251/j.issn.0254-6051.2017.11.029

    Li H, Li Z T, Jin H Y, et al. Influence of pre-aging and bake hardening on microstructure and hardness of 6016 aluminum alloy. Heat Treat Met, 2017, 42(11): 148 doi: 10.13251/j.issn.0254-6051.2017.11.029
    [10]
    王鑫, 劉春鵬, 呂海波, 等. 回歸再時效對6082合金組織及電化學腐蝕性的影響. 特種鑄造及有色合金, 2019, 39(1):84 doi: 10.15980/j.tzzz.2019.01.023

    Wang X, Liu C P, Lü H B, et al. Effects of retrogression reaging on microstructure and electrochemical corrosion resistance of 6082 aluminum alloy. Special Cast &Nonferrous Alloys, 2019, 39(1): 84 doi: 10.15980/j.tzzz.2019.01.023
    [11]
    魏玉. 時效時間對汽車用6063鋁合金組織與力學性能的影響. 熱加工工藝, 2020, 49(14):134 doi: 10.14158/j.cnki.1001-3814.20192766

    Wei Y. Effects of aging time on microstructure and mechanical properties of 6063 aluminum alloy for automobile. Hot Work Technol, 2020, 49(14): 134 doi: 10.14158/j.cnki.1001-3814.20192766
    [12]
    商寶川, 尹志民, 周向, 等. 固溶-時效對6082合金擠壓棒材組織性能的影響. 材料熱處理學報, 2011, 32(1):77 doi: 10.13289/j.issn.1009-6264.2011.01.015

    Shang B C, Yin Z M, Zhou X, et al. Effect of solution and aging treatment on microstructure and properties of hot extruded 6082 aluminum alloy bars. Trans Mater Heat Treat, 2011, 32(1): 77 doi: 10.13289/j.issn.1009-6264.2011.01.015
    [13]
    Kim Y, Mishra R K, Sachdev A K, et al. A combined experimental-analytical modeling study of the artificial aging response of Al–Mg–Si alloys. Mater Sci Eng A, 2021, 820: 141566 doi: 10.1016/j.msea.2021.141566
    [14]
    Khangholi S N, Javidani M, Maltais A, et al. Effects of natural aging and pre-aging on the strength and electrical conductivity in Al–Mg–Si AA6201 conductor alloys. Mater Sci Eng A, 2021, 820: 141538 doi: 10.1016/j.msea.2021.141538
    [15]
    Yildiz R A, Yilmaz S. Stress-strain properties of artificially aged 6061 Al alloy: Experiments and modeling. J Mater Eng Perform, 2020, 29(9): 5764 doi: 10.1007/s11665-020-05080-6
    [16]
    劉剛, 張國君, 丁向東, 等. 具有盤/片狀, 棒/針狀析出相鋁合金的時效-屈服強度變化模型. 稀有金屬材料與工程, 2003, 32(12):971 doi: 10.3321/j.issn:1002-185X.2003.12.002

    Liu G, Zhang G J, Ding X D, et al. A model for age strengthening of Al alloys with plate/disc-like or rod/needle-like precipitate. Rare Met Mater Eng, 2003, 32(12): 971 doi: 10.3321/j.issn:1002-185X.2003.12.002
    [17]
    任智煒, 羅兵輝, 鄭亞亞, 等. Mg、Si含量對Al–Mg–Si合金顯微組織與性能的影響. 材料導報, 2019, 33(18):3072 doi: 10.11896/cldb.18070193

    Ren Z W, Luo B H, Zheng Y Y, et al. Effect of Mg and Si content on microstructure and property of Al–Mg–Si alloy. Mater Rep, 2019, 33(18): 3072 doi: 10.11896/cldb.18070193
    [18]
    艾世杰, 陳康敏, 許曉靜, 等. 時效對鋯-鍶復合微合金化6013鋁合金性能的影響. 金屬熱處理, 2013, 38(6):71 doi: 10.13251/j.issn.0254-6051.2013.06.030

    Ai S J, Chen K M, Xu X J, et al. Effect of aging on properties of Zr-Sr microalloyed 6013 aluminum alloy. Heat Treat Met, 2013, 38(6): 71 doi: 10.13251/j.issn.0254-6051.2013.06.030
    [19]
    Braun R. Investigations on the long-term stability of 6013-T6 sheet. Mater Charact, 2006, 56(2): 85 doi: 10.1016/j.matchar.2005.03.006
    [20]
    張國鵬. 熱處理工藝對新型6XXX系鋁合金組織與性能的影響[學位論文]. 長沙: 中南大學, 2010

    Zhang G P. Effect of Heat Treatment Process on Microstructure and Properties of New 6XXX Series Aluminum Alloy. [Dissertation]. Changsha: Central South University, 2010
    [21]
    Miao W, Laughlin D. Effects of Cu content and preaging on precipitation characteristics in Aluminum alloy 6022. Metall Mater Trans A, 2012, 31(2): 361
    [22]
    杜鵬, 閆曉東, 李彥利, 等. 6061鋁合金中富鐵相在均勻化過程中的相變機理. 中國有色金屬學報, 2011, 21(5):981 doi: 10.19476/j.ysxb.1004.0609.2011.05.007

    Du P, Yan X D, Li Y L, et al. Transformation mechanism of iron-rich phase in 6061 aluminum alloy during homogenization. Chin J Nonferrous Met, 2011, 21(5): 981 doi: 10.19476/j.ysxb.1004.0609.2011.05.007
    [23]
    馬思怡, 張偉健, 蘇睿明, 等. 7xxx系鋁合金回歸再時效的研究現狀. 有色金屬科學與工程, 2022, 13(2):38 doi: 10.13264/j.cnki.ysjskx.2022.02.006

    Ma S Y, Zhang W J, Su R M, et al. Research status of regression and reaging on 7xxx series aluminum alloy. Nonferrous Met Sci Eng, 2022, 13(2): 38 doi: 10.13264/j.cnki.ysjskx.2022.02.006
    [24]
    丁鳳娟, 賈向東, 洪騰蛟, 等. 不同熱處理工藝對6061鋁合金塑性和硬度的影響. 材料導報, 2021, 35(8):8108 doi: 10.11896/cldb.19120115

    Ding F J, Jia X D, Hong T J, et al. Influence of different heat treatment processes on plasticity and hardness of 6061 aluminum alloy. Mater Rep, 2021, 35(8): 8108 doi: 10.11896/cldb.19120115
    [25]
    Engler O, Marioara C D, Aruga Y, et al. Effect of natural ageing or pre-ageing on the evolution of precipitate structure and strength during age hardening of Al–Mg–Si alloy AA 6016. Mater Sci Eng A, 2019, 759: 520 doi: 10.1016/j.msea.2019.05.073
    [26]
    寧愛林, 孫瑜, 黃繼武. 不同時效工藝對6063鋁合金組織和力學性能的影響. 機械工程材料, 2013, 37(3):28

    Ning A L, Sun Y, Huang J W. Effects of different ageing processes on microstructure and mechanical properties of 6063Aluminum alloy. Mater Mech Eng, 2013, 37(3): 28
    [27]
    Bahrami A, Miroux A, Sietsma J. An age-hardening model for Al–Mg–Si alloys considering needle-shaped precipitates. Metall Mater Trans, 2012, 43(11): 4445 doi: 10.1007/s11661-012-1211-8
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (344) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164