Citation: | ZENG Hong-bo, AI Xin-gang, CHEN Ming, WANG Min, JIANG Jia-xuan. Phase field method study on the directional solidification microstructure of a Fe–C alloy under forced convection[J]. Chinese Journal of Engineering, 2023, 45(4): 541-550. doi: 10.13374/j.issn2095-9389.2022.01.11.004 |
[1] |
Ding X F, Lin J P, Zhang L Q, et al. Lamellar orientation control in a Ti?46Al?5Nb alloy by directional solidification. Scr Mater, 2011, 65(1): 61 doi: 10.1016/j.scriptamat.2011.02.011
|
[2] |
問亞崗, 崔春娟, 田露露, 等. 定向凝固技術的研究進展與應用. 材料導報, 2016, 30(3):116
Wen Y G, Cui C J, Tian L L, et al. Research progress and application of the directional solidification technology. Mater Rep, 2016, 30(3): 116
|
[3] |
Liu S C, Liu L H, Li S, et al. Free dendritic growth model considering both interfacial nonisothermal nature and effect of convection for binary alloy. Trans Nonferrous Met Soc China, 2021, 31(5): 1518 doi: 10.1016/S1003-6326(21)65595-4
|
[4] |
Tourret D, Karma A. Growth competition of columnar dendritic grains: A phase-field study. Acta Mater, 2015, 82: 64 doi: 10.1016/j.actamat.2014.08.049
|
[5] |
Takaki T, Shimokawabe T, Ohno M, et al. Unexpected selection of growing dendrites by very-large-scale phase-field simulation. J Cryst Growth, 2013, 382: 21
|
[6] |
Shibuta Y, Ohno M, Takaki T. Advent of cross‐scale modeling: high‐performance computing of solidification and grain growth. Adv Theory Simul, 2018, 1(9): 1800065 doi: 10.1002/adts.201800065
|
[7] |
Aufgebauer H, Kundin J, Emmerich H, et al. Phase-field simulations of particle capture during the directional solidification of silicon. J Cryst Growth, 2016, 446: 12 doi: 10.1016/j.jcrysgro.2016.04.032
|
[8] |
Ferreira A F, Castro J A, Ferreira L. Predicting secondary-dendrite arm spacing of the Al?4.5wt%Cu alloy during unidirectional solidification. Mat Res, 2016, 20(1): 68
|
[9] |
Kundin J, Siquieri R, Emmerich H. A quantitative multi-phase-field modeling of the microstructure evolution in a peritectic Al?Ni alloy. Phys D-Nonlinear Phenom, 2013, 243(1): 116 doi: 10.1016/j.physd.2012.10.004
|
[10] |
Novokreshchenova A A, Lebedev V G. Determining the phase-field mobility of pure nickel based on molecular dynamics data. Tech Phys, 2017, 62(4): 642 doi: 10.1134/S1063784217040181
|
[11] |
Pinomaa T, Provatas N. Quantitative phase field modeling of solute trapping and continuous growth kinetics in quasi-rapid solidification. Acta Mater, 2019, 168: 167 doi: 10.1016/j.actamat.2019.02.009
|
[12] |
Lenart R, Eshraghi M. Modeling columnar to equiaxed transition in directional solidification of Inconel 718 alloy. Comput Mater Sci, 2020, 172: 109374
|
[13] |
Enugala S N, Kellner M, Kobold R, et al. Theoretical and numerical investigations of rod growth of an Ni?Zr eutectic alloy. J Mater Sci, 2019, 54(19): 12605 doi: 10.1007/s10853-019-03802-3
|
[14] |
Noubary K D, Kellner M, Steinmetz P, et al. Phase-field study on the effects of process and material parameters on the tilt angle during directional solidification of ternary eutectics. Comput Mater Sci, 2017, 138: 403
|
[15] |
Steinmetz P, Kellner M, H?tzer J, et al. Quantitative comparison of ternary eutectic phase-field simulations with analytical 3D Jackson–hunt approaches. Metall Mater Trans B, 2018, 49(1): 213
|
[16] |
Ghosh S, Karma A, Plapp M, et al. Influence of morphological instability on grain boundary trajectory during directional solidification. Acta Mater, 2019, 175: 214 doi: 10.1016/j.actamat.2019.04.054
|
[17] |
Wang Z J, Wang J C, Li J J, et al. Quantitative investigation of cellular growth in directional solidification by phase-field simulation. Phys Rev E, 2011, 84(4): 041604
|
[18] |
Wang Z J, Li J J, Wang J C, et al. Phase field modeling the selection mechanism of primary dendritic spacing in directional solidification. Acta Mater, 2012, 60(5): 1957
|
[19] |
Chen M, Hu X D, Ju D Y, et al. The microstructure prediction of magnesium alloy crystal growth in directional solidification. Comput Mater Sci, 2013, 79: 684 doi: 10.1016/j.commatsci.2013.07.030
|
[20] |
Yang C, Xu Q Y, Liu B C. GPU-accelerated three-dimensional phase-field simulation of dendrite growth in a nickel-based superalloy. Comput Mater Sci, 2017, 136: 133 doi: 10.1016/j.commatsci.2017.04.031
|
[21] |
Chen Y, Bogno A A, Xiao N M, et al. Quantitatively comparing phase-field modeling with direct real time observation by synchrotron X-ray radiography of the initial transient during directional solidification of an Al?Cu alloy. Acta Mater, 2012, 60(1): 199
|
[22] |
Wang Y B, Jia S S, Wei M G, et al. Coupling in situ synchrotron X-ray radiography and phase-field simulation to study the effect of low cooling rates on dendrite morphology during directional solidification in Mg?Gd alloys. J Alloys Compd, 2020, 815: 152385
|
[23] |
Zhang B, Zhao Y H, Chen W P, et al. Phase field simulation of dendrite sidebranching during directional solidification of Al?Si alloy. J Cryst Growth, 2019, 522: 183 doi: 10.1016/j.jcrysgro.2019.06.027
|
[24] |
Zhu C S, Xu S, Feng L, et al. Phase-field model simulations of alloy directional solidification and seaweed-like microstructure evolution based on adaptive finite element method. Comput Mater Sci, 2019, 160: 53 doi: 10.1016/j.commatsci.2018.12.058
|
[25] |
Wang Y B, Wei M G, Liu X T, et al. Phase-field study of the effects of the multi-controlling parameters on columnar dendrite during directional solidification in hexagonal materials. Eur Phys J E Soft Matter, 2020, 43(7): 41 doi: 10.1140/epje/i2020-11964-9
|
[26] |
夏勇, 李亮, 王璞, 等. 脹斷連桿用高碳微合金鋼連鑄大方坯的鑄態組織. 工程科學學報, 2022, 44(2):189 doi: 10.3321/j.issn.1001-053X.2022.2.bjkjdxxb202202004
Xia Y, Li L, Wang P, et al. Characteristics of the as-cast high-carbon microalloyed continuous casting bloom steel for expansion-break connecting rods. Chin J Eng, 2022, 44(2): 189 doi: 10.3321/j.issn.1001-053X.2022.2.bjkjdxxb202202004
|
[27] |
袁訓鋒, 丁雨田. 強制對流作用下多枝晶生長的相場法研究. 材料工程, 2011, 39(10):5 doi: 10.3969/j.issn.1001-4381.2011.10.002
Yuan X F, Ding Y T. Phase-field method of multi-dendrites growth under forced flow. J Mater Eng, 2011, 39(10): 5 doi: 10.3969/j.issn.1001-4381.2011.10.002
|
[28] |
袁訓鋒, 丁雨田. 強制對流作用下純Ni枝晶生長的相場法研究(二). 鑄造技術, 2012, 33(9):1034
Yuan X F, Ding Y T. Simulation of dendritic growth of pure Ni using phase-field model under forced flow Ⅱ. Foundry Technol, 2012, 33(9): 1034
|
[29] |
Chen Z, Hao L M, Chen C L. Simulation of faceted dendrite growth of non-isothermal alloy in forced flow by phase field method. J Cent South Univ Technol, 2011, 18(6): 1780 doi: 10.1007/s11771-011-0902-4
|
[30] |
Wang J W, Wang Z P, Lu Y, et al. Effect of forced lamina flow on microsegregation simulated by phase field method quantitatively. Trans Nonferrous Met Soc China, 2012, 22(2): 391
|
[31] |
Zhu C S, Lei P, Xiao R Z, et al. Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method. Trans Nonferrous Met Soc China, 2015, 25(1): 241 doi: 10.1016/S1003-6326(15)63599-3
|
[32] |
Luo S, Wang P, Wang W L, et al. PF-LBM modelling of dendritic growth and motion in an undercooled melt of Fe?C binary alloy. Metall Mater Trans B, 2020, 51(5): 2268 doi: 10.1007/s11663-020-01925-6
|
[33] |
Zhang A, Du J L, Guo Z P, et al. Phase-field lattice-Boltzmann investigation of dendritic evolution under different flow modes. Philos Mag, 2019, 99(23): 2920
|
[34] |
Takaki T, Sakane S, Ohno M, et al. Competitive growth during directional solidification of a binary alloy with natural convection: Two-dimensional phase-field study. Modelling Simul Mater Sci Eng, 2019, 27(5): 054001 doi: 10.1088/1361-651X/ab1a17
|
[35] |
陳志, 陳長樂, 郝麗梅. 有/無強制流動下定向凝固界面形貌的數值模擬研究. 稀有金屬材料與工程, 2010, 39(12):2117
Chen Z, Chen C L, Hao L M. Phase field simulation of the interface morphology during directional solidification in a forced flow/free flow. Rare Met Mater Eng, 2010, 39(12): 2117
|
[36] |
Yang C, Xu Q Y, Liu B C. Phase-field-lattice Boltzmann simulation of dendrite growth under natural convection in multicomponent superalloy solidification. Rare Met, 2020, 39(2): 147 doi: 10.1007/s12598-019-01292-5
|
[37] |
Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys. Phys Rev E, 1999, 60(6): 7186 doi: 10.1103/PhysRevE.60.7186
|
[38] |
張德良. 計算流體力學教程. 北京: 高等教育出版社, 2010
Huang D L. A Course in Computational Fluid Dynamics. Beijing: Higher Education Press, 2010
|
[39] |
劉建麟, 呂義清, 徐博. 基于MacCormack-TVD有限差分算法的二維泥石流數值計算模型. 科技通報, 2019, 35(4):222 doi: 10.13774/j.cnki.kjtb.2019.04.040
Liu J L, Lv Y Q, Xu B. Two dimensional debris flow numerical calculation model based on MacCormack-TVD finite difference algorithm. Bull Sci Technol, 2019, 35(4): 222 doi: 10.13774/j.cnki.kjtb.2019.04.040
|
[40] |
蘇彥慶, 駱良順. 包晶合金定向凝固. 哈爾濱: 哈爾濱工業大學出版社, 2017
Su Y Q, Luo L S. Directional Solidification of Peritectic Alloys. Harbin: Harbin Institute of Technology Press, 2017
|
[41] |
王錦程, 郭春文, 李俊杰, 等. 定向凝固晶粒競爭生長的研究進展. 金屬學報, 2018, 54(5):657 doi: 10.11900/0412.1961.2017.00543
Wang J C, Guo C W, Li J J, et al. Recent progresses in competitive grain growth during directional solidification. Acta Metall Sin, 2018, 54(5): 657 doi: 10.11900/0412.1961.2017.00543
|