<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
ZHU Wancheng, DAI Feng, REN Min, GUAN Kai, NIU Leilei, DONG Hangyu. Review of unstable falling of roof rock blocks under dynamic disturbance[J]. Chinese Journal of Engineering, 2023, 45(9): 1425-1440. doi: 10.13374/j.issn2095-9389.2022.01.10.005
Citation: ZHU Wancheng, DAI Feng, REN Min, GUAN Kai, NIU Leilei, DONG Hangyu. Review of unstable falling of roof rock blocks under dynamic disturbance[J]. Chinese Journal of Engineering, 2023, 45(9): 1425-1440. doi: 10.13374/j.issn2095-9389.2022.01.10.005

Review of unstable falling of roof rock blocks under dynamic disturbance

doi: 10.13374/j.issn2095-9389.2022.01.10.005
More Information
  • Corresponding author: E-mail: zhuwancheng@mail.neu.edu.cn
  • Received Date: 2022-01-10
    Available Online: 2023-01-12
  • Publish Date: 2023-09-25
  • Roof caving has been the main threat to the safety of underground mining, in which the caving of roof rock blocks is particularly concerning. The secondary structural planes of surrounding rocks around underground excavations, such as roadways and stopes, are developed. The rock mass is prone to break into several independent blocks, and these rock blocks may slide and fall under the action of static in-situ stress or external dynamic disturbances. Under quasistatic stress conditions, the instability and collapse of roof rock blocks are mainly caused by structural plane extensions and changes in the stress balance condition of the rock block system. However, under external dynamic disturbances, the sliding process and instability of roof rock blocks are associated with the development of fractures triggered by stress waves. Further, they are affected by the variation of stress balance conditions of the rock block system and the transmission of stress waves in the block system. This paper summarized the existing studies on roof rock block stability under quasistatic and dynamic disturbance conditions. Previous studies have proposed relatively mature theoretical systems for the stability analysis of roof rock blocks under static or quasistatic situations. However, a majority of the studies on rock block stability under an external dynamic disturbance condition examine stress wave propagation in a rock block system while overlooking the analysis of the crack development mechanism and dynamic variation in stress balance conditions. Therefore, further research is necessary to reveal the caving mechanism of roof rock blocks triggered by a dynamic disturbance. By summarizing relevant work, the difficulties encountered in the study of roof rock block caving under a dynamic disturbance are discussed. The key scientific problem is to uncover the fundamental mechanism behind roof rock block instability induced by a dynamic disturbance. Finally, a series of experimental and numerical simulations conducted on the sliding and instability of roof rock blocks under a dynamic disturbance revealed clear differences in the mechanism of the sliding instability of roof blocks due to dynamic disturbances in different directions. The reduction in friction between the blocks is the fundamental cause of the key block sliding under a lateral disturbance, while the sliding of the rock blocks under a vertical disturbance is mainly driven by the dynamic load. This finding can provide a theoretical reference for preventing and controlling roof caving in underground mines.

     

  • loading
  • [1]
    程愛寶. 2006—2012年湖南省非煤礦山事故統計分析報告. 湖南安全與防災, 2013(4):48 doi: 10.3969/j.issn.1007-9947.2013.04.021

    Cheng A B. Statistical analysis report of non-coal mine accidents in Hunan Province from 2006 to 2012. Hunan Saf Disaster Prev, 2013(4): 48 doi: 10.3969/j.issn.1007-9947.2013.04.021
    [2]
    吳亞斌, 唐紹輝, 李廣輝. 地下礦山冒頂片幫風險控制技術研究. 采礦技術, 2015, 15(2):54 doi: 10.3969/j.issn.1671-2900.2015.02.018

    Wu Y B, Tang S H, Li G H. Study on risk control technology of roof caving and spalling in underground mines. Min Technol, 2015, 15(2): 54 doi: 10.3969/j.issn.1671-2900.2015.02.018
    [3]
    王子健. 地下金屬礦山頂板冒落區域危險性預測技術研究[學位論文]. 北京: 中國地質大學(北京), 2020

    Wang Z J. Research on the Regional Risk Prediction Technology of Roof Caving in Underground Metal Mine [Dissertation]. Beijing: China University of Geosciences, 2020
    [4]
    石崇, 褚衛江, 鄭文棠. 塊體離散元數值模擬技術及工程應用. 北京: 中國建筑工業出版社, 2016

    Shi C, Chu W J, Zheng W T. Numerical Simulation Technology of Block Discrete Element and its Engineering Application. Beijing: China Architecture & Building Press, 2016
    [5]
    Goodman R E, Shi G H. Block Theory and Its Application to Rock Engineering. Englewood Cliffs: Prentice Hhall, 1985
    [6]
    Shi G H, Goodman R E. The key blocks of unrolled joint traces in developed maps of tunnel walls. Int J Numer Anal Methods Geomech, 1989, 13(2): 131 doi: 10.1002/nag.1610130203
    [7]
    劉嘯, 華心祝, 黃志國, 等. 應力波作用下含大型結構面巖體垮塌動力失穩機制. 巖石力學與工程學報, 2021, 40(10):2003 doi: 10.13722/j.cnki.jrme.2021.0395

    Liu X, Hua X Z, Huang Z G, et al. Dynamic collapse mechanisms of rock mass with large structural planes under stress waves. Chin J Rock Mech Eng, 2021, 40(10): 2003 doi: 10.13722/j.cnki.jrme.2021.0395
    [8]
    靖洪文, 吳疆宇, 尹乾, 等. 動載擾動下深部煤巷沖擊冒頂的顆粒流數值模擬研究. 巖石力學與工程學報, 2020, 39(增刊 2):3475 doi: 10.13722/j.cnki.jrme.2020.0180

    Jing H W, Wu J Y, Yin Q, et al. Particle flow simulation of rock burst and roof fall of deep coal roadway under dynamic disturbance. Chin J Rock Mech Eng, 2020, 39(Suppl 2): 3475 doi: 10.13722/j.cnki.jrme.2020.0180
    [9]
    Singh P K, Roy M P, Singh R K. Responses of roof and pillars of underground coal mines to vibration induced by adjacent open-pit blasting. Env Geol, 2005, 47(2): 205 doi: 10.1007/s00254-004-1144-7
    [10]
    Ma G W, An X M, Wang M Y. Analytical study of dynamic friction mechanism in blocky rock systems. Int J Rock Mech Min Sci, 2009, 46(5): 946 doi: 10.1016/j.ijrmms.2009.04.001
    [11]
    錢鳴高, 石平五, 許家林. 礦山壓力與巖層控制. 徐州: 中國礦業大學出版社, 2010

    Qian M G, Shi P W, Xu J L. Mining Pressure and Strata Control. Xuzhou: China University of Mining Technology Press, 2010
    [12]
    宋振騏. 實用礦山壓力理論. 徐州: 中國礦業大學出版社, 1988

    Song Z Q. Practical Theory of Mining Pressure. Xuzhou: China University of Mining Technology Press, 1988
    [13]
    錢鳴高, 繆協興, 何富連. 采場“砌體梁”結構的關鍵塊分析. 煤炭學報, 1994, 19(6):557 doi: 10.13225/j.cnki.jccs.1994.06.001

    Qian M G, Miu X X, He F L. Analysis of key block in the structure of voussoir beam in longwall mining. J China Coal Soc, 1994, 19(6): 557 doi: 10.13225/j.cnki.jccs.1994.06.001
    [14]
    錢鳴高, 朱德仁, 王作棠. 老頂巖層斷裂型式及對工作面來壓的影響. 中國礦業學院學報, 1986, 15(2):9

    Qian M G, Zhu D R, Wang Z T. The fracture types of main roof and their effects on roof pressure in coal face. J China Univ Min Technol, 1986, 15(2): 9
    [15]
    錢鳴高, 張頂立, 黎良杰, 等. 砌體梁的“S–R”穩定及其應用. 礦山壓力與頂板管理, 1994, 11(3):6

    Qian M G, Zhang D L, Li L J, et al. S–R stability for the voussoir beam and its application. Ground Press Strata Control, 1994, 11(3): 6
    [16]
    錢鳴高, 繆協興, 許家林. 巖層控制中的關鍵層理論研究. 煤炭學報, 1996, 21(3):225 doi: 10.3321/j.issn:0253-9993.1996.03.001

    Qian M G, Miu X X, Xu J L. Theoretical study of key stratum in ground control. J China Coal Soc, 1996, 21(3): 225 doi: 10.3321/j.issn:0253-9993.1996.03.001
    [17]
    石根華. 巖體穩定分析的赤平投影方法. 中國科學, 1977, 7(3):260

    Shi G H. Stereographic projection method for stability analysis of rock mass. Sci China Sera, 1977, 7(3): 260
    [18]
    劉阜羊, 朱珍德, 孫少銳. 塊體理論及其在洞室圍巖穩定分析中的應用. 地下空間與工程學報, 2006, 2(增刊 2):1408 doi: 10.3969/j.issn.1673-0836.2006.z2.027

    Liu F Y, Zhu Z D, Sun S R. Block theory and its application in surrounding rock stability analysis in underground opening. Chin J Undergr Space Eng, 2006, 2(Suppl 2): 1408 doi: 10.3969/j.issn.1673-0836.2006.z2.027
    [19]
    盛謙, 黃正加, 鄔愛清. 三峽工程地下廠房隨機塊體穩定性分析. 巖土力學, 2002, 23(6):747 doi: 10.3969/j.issn.1000-7598.2002.06.033

    Sheng Q, Huang Z J, Wu A Q. Stability analysis for random key block of underground power house of Three Gorges Project. Rock Soil Mech, 2002, 23(6): 747 doi: 10.3969/j.issn.1000-7598.2002.06.033
    [20]
    趙鐵林, 王恩鵬, 解興智. 塊體理論在堅硬特厚煤層綜放開采中的應用探索. 煤礦開采, 2015, 20(2):13

    Zhao T L, Wang E P, Xie X Z. Application of block theory in full-mechanized caving mining in hard and extremely-thick coal-seam. Coal Min Technol, 2015, 20(2): 13
    [21]
    王忠昶, 楊慶, 趙德深. 地下洞室群圍巖關鍵塊體的確定性搜索. 水力發電學報, 2009, 28(2):72

    Wang Z C, Yang Q, Zhao D S. The determinate research of key block of surrounding rock mass for underground Caverns. J Hydroelectr Eng, 2009, 28(2): 72
    [22]
    肖詩榮. 三峽工程地下廠房圍巖關鍵塊體研究. 水文地質工程地質, 2005, 32(3):15 doi: 10.3969/j.issn.1000-3665.2005.03.004

    Xiao S R. Research on key blocks in the surrounding rock mass of underground powerhouse, the Three Gorges Project. Hydrogeol Eng Geol, 2005, 32(3): 15 doi: 10.3969/j.issn.1000-3665.2005.03.004
    [23]
    Chen Q F, Qin S K, Yin T C, et al. Search and graphical display of hazardous blocks in underground roadway roofs. Int J Rock Mech Min Sci, 2019, 123: 104095 doi: 10.1016/j.ijrmms.2019.104095
    [24]
    Indraratna B, Oliveira D A F, Brown E T, et al. Effect of soil-infilled joints on the stability of rock wedges formed in a tunnel roof. Int J Rock Mech Min Sci, 2010, 47(5): 739 doi: 10.1016/j.ijrmms.2010.05.006
    [25]
    Lee I M, Park J K. Stability analysis of tunnel keyblock: A case study. Tunn Undergr Space Technol, 2000, 15(4): 453 doi: 10.1016/S0886-7798(01)00014-1
    [26]
    Kazem O, Nikzad O, Arash G. Effect of discontinuities characteristics on coal mine stability and sustainability: A rock fall prediction approach. Int J Min Sci Technol, 2016, 26(1): 65 doi: 10.1016/j.ijmst.2015.11.012
    [27]
    Kocharyan G G, Brigadin I V, Karyakin A G, et al. Failure of underground workings in rock of block structure under the action of dynamic forces. I. Experimental data on the failure mechanics of real rock under the action of powerful explosionss. J Min Sci, 1994, 30(4): 370
    [28]
    Kurlenya M V, Oparin V N, Vostrikov V I. Pendulum-type waves. Part I: State of the problem and measuring instrument and computer complexes. J Min Sci, 1996, 32(3): 159
    [29]
    Kurlenya M V, Oparin V N, Vostrikov V I. Geomechanical conditions for quasi-resonances in geomaterials and block media. J Min Sci, 1998, 34(5): 379 doi: 10.1007/BF02550693
    [30]
    Qian Q H. Key scientific problems in the development of deep underground space // Proceedings of the 230th Science Conference on Xiangshan Mountain-Key Technical Problems in the Development of Deep Underground Space. Beijing, 2007: 565
    [31]
    Kurlenya M V, Oparin V N, Vostrikov V I. Pendulum-type waves Part II: Experimental methods and main results of physical modeling. J Min Sci, 1996, 32(4): 245
    [32]
    Kurlenya M V, Oparin V N. Problems of nonlinear geomechanics part I. J Min Sci, 1999, 35(3): 216
    [33]
    Kurlenya M V, Oparin V N. Problems of nonlinear geomechanics. Part II. J Min Sci, 2000, 36(4): 305
    [34]
    Kocharyan G G, Spivak A A. Movement of rock blocks during large-scale underground explosions. Part I: Experimental data. J Min Sci, 2001, 37(1): 64
    [35]
    Kocharyan G G, Spivak A A, Budkov A M. Movement of rock blocks during large-scale underground explosions. Part II: Estimates by analytical models, numerical calculations, and comparative analysis of theoretical and experimental data. J Min Sci, 2001, 37(2): 149
    [36]
    Chanyshev A I, Efimenko L L. Mathematical models of block media in problems of geomechanics. Part I: Deformation of stratified medium. J Min Sci, 2003, 39(3): 271
    [37]
    Chanyshev A I, Efimenko L L. Mathematical models of block media in problems of geomechanics. Part II: Consideration of the transverse block deformations. J Min Sci, 2003, 39(6): 540
    [38]
    Aleksandrova N I. Elastic wave propagation in block medium under impulse loading. J Min Sci, 2003, 39(6): 556 doi: 10.1023/B:JOMI.0000036223.58270.42
    [39]
    Aleksandrova N I, Sher E N, Chernikov A G. Effect of viscosity of partings in block-hierarchical media on propagation of low-frequency pendulum waves. J Min Sci, 2008, 44(3): 225 doi: 10.1007/s10913-008-0012-3
    [40]
    Sher E N, Aleksandrova N I, Ayzenberg-Stepanenko M V, et al. Influence of the block-hierarchical structure of rocks on the peculiarities of seismic wave propagation. J Min Sci, 2007, 43(6): 585 doi: 10.1007/s10913-007-0063-x
    [41]
    王明洋, 戚承志, 錢七虎. 深部巖體塊系介質變形與運動特性研究. 巖石力學與工程學報, 2005, 24(16):2825 doi: 10.3321/j.issn:1000-6915.2005.16.003

    Wang M Y, Qi C Z, Qian Q H. Study on deformation and motion characteristics of blocks in deep rock mass. Chin J Rock Mech Eng, 2005, 24(16): 2825 doi: 10.3321/j.issn:1000-6915.2005.16.003
    [42]
    王洪亮, 葛濤, 王德榮, 等. 塊系巖體動力特性理論與實驗對比分析. 巖石力學與工程學報, 2007, 26(5):951 doi: 10.3321/j.issn:1000-6915.2007.05.012

    Wang H L, Ge T, Wang D R, et al. Comparison of theoretical and experimental analyses of dynamic characteristics of block rock mass. Chin J Rock Mech Eng, 2007, 26(5): 951 doi: 10.3321/j.issn:1000-6915.2007.05.012
    [43]
    吳昊, 方秦, 王洪亮. 深部塊系巖體超低摩擦現象的機理分析. 巖土工程學報, 2008, 30(5):769 doi: 10.3321/j.issn:1000-4548.2008.05.025

    Wu H, Fang Q, Wang H L. Mechanism of anomalously low friction phenomenon in deep block rock mass. Chin J Geotech Eng, 2008, 30(5): 769 doi: 10.3321/j.issn:1000-4548.2008.05.025
    [44]
    李利萍, 潘一山, 章夢濤. 基于簡支梁模型的巖體超低摩擦效應理論分析. 巖石力學與工程學報, 2009, 28(增刊 1):2715 doi: 10.3321/j.issn:1000-6915.2009.z1.019

    Li L P, Pan Y S, Zhang M T. Theoretical analysis of effect of anomalously low friction on rock mass based on simply supported beam model. Chin J Rock Mech Eng, 2009, 28(Suppl 1): 2715 doi: 10.3321/j.issn:1000-6915.2009.z1.019
    [45]
    潘一山, 王凱興. 巖塊尺度對擺型波傳播影響研究. 巖石力學與工程學報, 2012, 31(增刊 2):3459

    Pan Y S, Wang K X. Study effect of block-rock scale on pendulum-type wave propagation. Chin J Rock Mech Eng, 2012, 31(Suppl 2): 3459
    [46]
    李利萍, 潘一山, 王曉純, 等. 考慮上覆巖層壓力的深部巖體塊系介質超低摩擦效應理論分析. 自然災害學報, 2014, 23(1):149 doi: 10.13577/j.jnd.2014.0121

    Li L P, Pan Y S, Wang X C, et al. Theoretical analysis of ultra-low friction effect in deep block rock mass considering overlying rock pressure. J Nat Disasters, 2014, 23(1): 149 doi: 10.13577/j.jnd.2014.0121
    [47]
    王凱興, 潘一山. 擺型波傳播過程塊系巖體頻域響應反演巖塊間黏彈性性質. 煤炭學報, 2013, 38(增刊 1):19 doi: 10.13225/j.cnki.jccs.2013.s1.002

    Wang K X, Pan Y S. Frequency domain response of block-rock mass inversion partings viscoelastic property on pendulum-type wave propagation. J China Coal Soc, 2013, 38(Suppl 1): 19 doi: 10.13225/j.cnki.jccs.2013.s1.002
    [48]
    王凱興, 潘一山, 曾祥華, 等. 塊系巖體間黏彈性性質對擺型波傳播的影響. 巖土力學, 2013, 34(增刊 2):174

    Wang K X, Pan Y S, Zeng X H, et al. Effect of viscoelasticity in block-rock mass partings to the propagation of pendulum waves. Rock Soil Mech, 2013, 34(Suppl 2): 174
    [49]
    姜寬, 戚承志, 朱柄宇, 等. 夾層非均勻分布的塊系巖體擺型波傳播規律. 科學技術與工程, 2019, 19(33):358 doi: 10.3969/j.issn.1671-1815.2019.33.053

    Jiang K, Qi C Z, Zhu B Y, et al. Propagation law of pendulum-type wave of the block rock with heterogeneous interlayer distribution. Sci Technol Eng, 2019, 19(33): 358 doi: 10.3969/j.issn.1671-1815.2019.33.053
    [50]
    李利萍, 潘一山, 王曉純, 等. 開采深度和垂直沖擊荷載對超低摩擦型沖擊地壓的影響分析. 巖石力學與工程學報, 2014, 33(增刊 1):3225

    Li L P, Pan Y S, Wang X C, et al. Influence analysis of exploit depth and vertical impact load on anomalously low friction rockburst. Chin J Rock Mech Eng, 2014, 33(Suppl 1): 3225
    [51]
    李利萍, 鞠翔宇, 潘一山, 等. 弱圍壓與垂直沖擊強擾動下塊系巖體超低摩擦效應試驗研究. 實驗力學, 2019, 34(6):1068 doi: 10.7520/1001-4888-18-092

    Li L P, Ju X Y, Pan Y S, et al. Experimental study of anomalously low friction effect of block rock mass subjected to weak confining pressure and strong vertical impact disturbance. J Exp Mech, 2019, 34(6): 1068 doi: 10.7520/1001-4888-18-092
    [52]
    Adushkin V V, Oparin V N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia. Part I. J Min Sci, 2012, 48(3): 203
    [53]
    Adushkin V V, Oparin V N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia. Part II. J Min Sci, 2013, 49(2): 175
    [54]
    Oparin V N, Adushkin V V, Kiryaeva T A, et al. Effect of pendulum waves from earthquakes on gas-dynamic behavior of coal seams in kuzbass. J Min Sci, 2018, 54(1): 1 doi: 10.1134/S1062739118013269
    [55]
    吳昊, 方秦, 張亞棟, 等. 深部巷道塊系圍巖分析模型及穩定性探討. 巖土工程學報, 2009, 31(8):1229 doi: 10.3321/j.issn:1000-4548.2009.08.012

    Wu H, Fang Q, Zhang Y D, et al. Analytical model and stability of surrounding block rock mass around deep tunnels. Chin J Geotech Eng, 2009, 31(8): 1229 doi: 10.3321/j.issn:1000-4548.2009.08.012
    [56]
    樊偉. 深埋地下洞室高邊墻圍巖塊體超低摩擦效應研究[學位論文]. 武漢: 武漢理工大學, 2017

    Fan W. Research on Anomalously Low Friction Effect of Block Mass in Surrounding Rocks of Deep Underground Cavern [Dissertation]. Wuhan: Wuhan University of Technology, 2017
    [57]
    潘一山, 王凱興, 肖永惠. 基于擺型波理論的防沖支護設計. 巖石力學與工程學報, 2013, 32(8):1537

    Pan Y S, Wang K X, Xiao Y H. Design of anti-scour support based on theory of pendulum-type wave. Chin J Rock Mech Eng, 2013, 32(8): 1537
    [58]
    王凱興, 孟村影, 楊月, 等. 塊系覆巖中擺型波傳播對巷道支護動力響應影響. 煤炭學報, 2014, 39(2):347

    Wang K X, Meng C Y, Yang Y, et al. Dynamic response of roadway support on pendulum type waves propagation in overburden block rock mass. J China Coal Soc, 2014, 39(2): 347
    [59]
    王凱興, 竇林名, 潘一山, 等. 塊系覆巖破壞對巷道頂板的防沖吸能效應研究. 中國礦業大學學報, 2017, 46(6):1211 doi: 10.13247/j.cnki.jcumt.000755

    Wang K X, Dou L M, Pan Y S, et al. Study of tunnel roof anti-impact and energy absorption effect on block overburden rock mass failure. J China Univ Min Technol, 2017, 46(6): 1211 doi: 10.13247/j.cnki.jcumt.000755
    [60]
    崔永權, 馬勝利, 劉力強. 側向應力擾動對斷層摩擦影響的實驗研究. 地震地質, 2005, 27(4):645 doi: 10.3969/j.issn.0253-4967.2005.04.013

    Cui Y Q, Ma S L, Liu L Q. Effect of lateral stress perturbation on frictional behavior: An experimental study. Seismol Geol, 2005, 27(4): 645 doi: 10.3969/j.issn.0253-4967.2005.04.013
    [61]
    李利萍, 潘一山, 馬勝利, 等. 深部開采巖體超低摩擦效應實驗研究. 采礦與安全工程學報, 2008, 25(2):164 doi: 10.3969/j.issn.1673-3363.2008.02.008

    Li L P, Pan Y S, Ma S L, et al. Experimental research into effect of ultra-low friction of rock mass in deep mining. J Min Saf Eng, 2008, 25(2): 164 doi: 10.3969/j.issn.1673-3363.2008.02.008
    [62]
    Li L P, Zhang H T, Pan Y S, et al. Influence of stress wave-induced disturbance on ultra-low friction in broken blocks. Int J Coal Sci Technol, 2022, 9(1): 1 doi: 10.1007/s40789-022-00477-1
    [63]
    鞠翔宇. 應力波擾動對塊系巖體超低摩擦效應影響試驗研究[學位論文]. 阜新: 遼寧工程技術大學, 2019

    Ju X Y. Experimental Study on Influence of Stress Wave Disturbance on Anomalously Low Friction Effect of Block Media [Dissertation]. Fuxin: Liaoning Technical University, 2019
    [64]
    李杰, 周益春, 蔣海明, 等. 非線性擺型波問題的提出及科研儀器研制. 湘潭大學自然科學學報, 2017, 39(4):22

    Li J, Zhou Y C, Jiang H M, et al. State of the nonlinear pendulum-type waves problems and development of the test equipment. Nat Sci J Xiangtan Univ, 2017, 39(4): 22
    [65]
    李杰, 蔣海明, 王明洋, 等. 爆炸與沖擊中的非線性巖石力學問題(Ⅱ): 沖擊擾動誘發巖塊滑移的物理模擬試驗. 巖石力學與工程學報, 2018, 37(2):291

    Li J, Jiang H M, Wang M Y, et al. Nonlinear mechanical problems in rock explosion and shock. Part Ⅱ: Physical model test on sliding of rock blocks triggered by external disturbance. Chin J Rock Mech Eng, 2018, 37(2): 291
    [66]
    Deng S X, Li J, Jiang H M, et al. Experimental and theoretical study of the fault slip events of rock masses around underground tunnels induced by external disturbances. Eng Geol, 2018, 233: 191 doi: 10.1016/j.enggeo.2017.12.007
    [67]
    Li J, Deng S X, Wang M Y, et al. Weak disturbance-triggered seismic events: An experimental and numerical investigation. Bull Eng Geol Environ, 2019, 78(4): 2943 doi: 10.1007/s10064-018-1292-8
    [68]
    王德榮, 陸渝生, 馮淑芳, 等. 深部巖體動態特性多功能試驗系統的研制. 巖石力學與工程學報, 2008, 27(3):601 doi: 10.3321/j.issn:1000-6915.2008.03.022

    Wang D R, Lu Y S, Feng S F, et al. Development of multipurpose test system for dynamic behaviors of deep rock masses. Chin J Rock Mech Eng, 2008, 27(3): 601 doi: 10.3321/j.issn:1000-6915.2008.03.022
    [69]
    Wu H, Fang Q, Zhang Y D, et al. Mechanism of anomalous low friction phenomenon in deep block rock mass. Min Sci Technol China, 2009, 19(4): 409 doi: 10.1016/S1674-5264(09)60077-6
    [70]
    Wu H, Fang Q, Lu Y S, et al. Model tests on anomalous low friction and pendulum-type wave phenomena. Prog Nat Sci, 2009, 19(12): 1805 doi: 10.1016/j.pnsc.2009.09.001
    [71]
    許瓊萍, 陸渝生, 王德榮. 深部巖體塊系摩擦減弱效應試驗. 解放軍理工大學學報(自然科學版), 2009, 10(3):285

    Xu Q P, Lu Y S, Wang D R. Experimental study on friction weakened effect of deep block rock mass. J PLA Univ Sci Technol Nat Sci Ed, 2009, 10(3): 285
    [72]
    賈寶新, 陳揚, 潘一山, 等. 沖擊載荷下塊系巖體擺型波傳播特性的試驗研究. 巖土力學, 2015, 36(11):3071

    Jia B X, Chen Y, Pan Y S, et al. Experimental research on propagation characteristics of block-rock mass pendulum-type wave under shock load. Rock Soil Mech, 2015, 36(11): 3071
    [73]
    何滿潮, 王煬, 劉冬橋, 等. 基于二維數字圖像相關技術的塊系花崗巖超低摩擦效應實驗研究. 煤炭學報, 2018, 43(10):2732

    He M C, Wang Y, Liu D Q, et al. Experimental study on ultra-low friction effect of granite block based on two-dimensional digital image correlation technique. J China Coal Soc, 2018, 43(10): 2732
    [74]
    Liu D Q, Lin Y W, Wang Y, et al. Experimental study on ultra-low friction effect of granite block under coupled static and dynamic loads. Geotech Geol Eng, 2020, 38(5): 4521 doi: 10.1007/s10706-020-01306-5
    [75]
    Aydan ?, Ohta Y, Geni? M, et al. Response and stability of underground structures in rock mass during earthquakes. Rock Mech Rock Eng, 2010, 43(6): 857 doi: 10.1007/s00603-010-0105-6
    [76]
    Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock. J Soil Mech Found Div, 1968, 94(3): 637 doi: 10.1061/JSFEAQ.0001133
    [77]
    Ghaboussi J, Wilson E L, Isenberg J. Finite element for rock joints and interfaces. J Geotech Engrg Div, 1973, 99(10): 849
    [78]
    Cundall P A. A computer model for simulating progressive large scale movements in blocky rock systems // Proocedings of the Symposio of the International Society of Rock Mechanics. Nancy, 1971, 8: 129
    [79]
    李文倩, 佟大威, 王振, 等. 考慮黏結特性的水電地下洞室塊體地震響應分析. 天津大學學報(自然科學與工程技術版), 2016, 49(4):369

    Li W Q, Tong D W, Wang Z, et al. Seismic responses of underground cavern block in hydraulic engineering considering bond characteristics. J Tianjin Univ Sci Technol, 2016, 49(4): 369
    [80]
    Li L P, Li W J, Tang J P, et al. Influence of bidirectional impact loading on anomalously low-friction effect in block rock media. Adv Civ Eng, 2018, 2018: 9156304
    [81]
    Li L P, Wu J P, Pan Y S, et al. Influencing factor analysis on the anomalously low-friction effect in the block rock mass. Adv Civ Eng, 2020, 2020: 8831486
    [82]
    王帥, 盛謙, 朱澤奇, 等. 地震荷載作用下地下洞室不利地質結構塌落機制研究. 巖土力學, 2012, 33(10):2897

    Wang S, Sheng Q, Zhu Z Q, et al. Study of collapse mechanism of underground Caverns with unfavorable geological structures under seismic loading. Rock Soil Mech, 2012, 33(10): 2897
    [83]
    廖明武. 地震和滲流作用下巖質邊坡穩定性的離散元模擬及復雜網絡評價[學位論文]. 湘潭: 湘潭大學, 2018

    Liao M W. Discrete Element Simulation and Complex Network Evaluation of Stability of Rock Slope Under Earthquake and Percolation [Dissertation]. Xiangtan: Xiangtan University, 2018
    [84]
    Zhao X B, Zhao J, Cai J G, et al. UDEC modelling on wave propagation across fractured rock masses. Comput Geotech, 2008, 35(1): 97 doi: 10.1016/j.compgeo.2007.01.001
    [85]
    Bottelin P, Jongmans D, Daudon D, et al. Seismic and mechanical studies of the artificially triggered rockfall at Mount Néron. Nat Hazards Earth Syst Sci, 2014, 14(12): 3175 doi: 10.5194/nhess-14-3175-2014
    [86]
    Sarhosis V, Baraldi D, Lemos J V, et al. Dynamic behaviour of ancient freestanding multi-drum and monolithic columns subjected to horizontal and vertical excitations. Soil Dyn Earthq Eng, 2019, 120: 39 doi: 10.1016/j.soildyn.2019.01.024
    [87]
    Xue J H, Zhan K L, Du X H, et al. Numerical simulation of the effect of dynamic stress on the rock surrounding a mine roadway. Adv Civ Eng, 2020, 2020: 1656830
    [88]
    Huang D, Song Y X, Cen D F, et al. Numerical modeling of earthquake-induced landslide using an improved discontinuous deformation analysis considering dynamic friction degradation of joints. Rock Mech Rock Eng, 2016, 49(12): 4767 doi: 10.1007/s00603-016-1056-3
    [89]
    Ghasemzadeh H, Ramezanpour M A, Bodaghpour S. Dynamic high order numerical manifold method based on weighted residual method. Int J Numer Meth Engng, 2014, 100(8): 596 doi: 10.1002/nme.4752
    [90]
    Qu X L, Ma G W, Qi C Z, et al. A coupled time integration algorithm for discontinuous deformation analysis using the numerical manifold method. Int J Numer Anal Methods Geomech, 2020, 44(8): 1145 doi: 10.1002/nag.3054
    [91]
    鐘登華, 魯文妍, 劉杰, 等. 復雜地質條件下地下洞室曲面塊體地震響應分析. 天津大學學報(自然科學與工程技術版), 2014, 47(6):471

    Zhong D H, Lu W Y, Liu J, et al. Surface-block identification and seismic response analysis of underground structures under complicated geological conditions. J Tianjin Univ Sci Technol, 2014, 47(6): 471
    [92]
    Fu X D, Sheng Q, Tang H, et al. Seismic stability analysis of a rock block using the block theory and Newmark method. Int J Numer Anal Methods Geomech, 2019, 43(7): 1392 doi: 10.1002/nag.2903
    [93]
    Fu X D, Du W J, Sheng Q, et al. Extensions of the dynamic Newmark method for seismic stability analysis of a rock block. Int J Numer Anal Methods Geomech, 2021, 45(10): 1477 doi: 10.1002/nag.3210
    [94]
    唐禮忠, 高龍華, 王春, 等. 動力擾動下含軟弱夾層巷道圍巖力學響應特性. 科技導報, 2014, 32(21):56 doi: 10.3981/j.issn.1000-7857.2014.21.009

    Tang L Z, Gao L H, Wang C, et al. Mechanical response features of roadway surrounding rock with weak interlayer under dynamic disturbance. Sci Technol Rev, 2014, 32(21): 56 doi: 10.3981/j.issn.1000-7857.2014.21.009
    [95]
    陳文, 吳培懋, 玉國進. WD-1型無線電地音儀在礦井松石冒落預報中的應用. 冶金安全, 1983, 9(1):14

    Chen W, Wu P M, Yu G J. The application of WD-1 radio geophone in the prediction of the caving of mine turquoise. Ind Saf Environ Prot, 1983, 9(1): 14
    [96]
    李新平, 樊偉, 羅憶, 等. 爆破擾動誘發地下洞室圍巖變形突變機制研究. 爆破, 2018, 35(1):9 doi: 10.3963/j.issn.1001-487X.2018.01.002

    Li X P, Fan W, Luo Y, et al. Mechanism study of abrupt deformation of surrounding rock induced by blasting disturbance. Blasting, 2018, 35(1): 9 doi: 10.3963/j.issn.1001-487X.2018.01.002
    [97]
    潘一山, 王凱興. 巖體間超低摩擦發生機理的擺型波理論. 地震地質, 2014, 36(3):833 doi: 10.3969/j.issn.0253-4967.2014.03.022

    Pan Y S, Wang K X. Pendulum-type waves theory on the mechanism of anomalously low friction between rock masses. Seismol Geol, 2014, 36(3): 833 doi: 10.3969/j.issn.0253-4967.2014.03.022
    [98]
    杜巖, 謝謨文, 蔣宇靜, 等. 基于動力學監測指標的崩塌早期預警研究進展. 工程科學學報, 2019, 41(4):427

    Du Y, Xie M W, Jiang Y J, et al. Research progress on dynamic monitoring index for early warning of rock collapse. Chin J Eng, 2019, 41(4): 427
    [99]
    Lai X P, Cai M F, Ren F H, et al. Predictive analysis of dynamic instability for Large-scale-mined-out-area (LSMA) based on field hybrid monitoring in western strong seismic region // Boundaries of Rock Mechanics. London, 2008: 327
    [100]
    Dang W G, Konietzky H, Frühwirt T, et al. Cyclic frictional responses of planar joints under cyclic normal load conditions: Laboratory tests and numerical simulations. Rock Mech Rock Eng, 2020, 53(1): 337 doi: 10.1007/s00603-019-01910-9
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (428) PDF downloads(175) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164