<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LI Tian-jiao, JIANG Fu-yi, YANG Kai, SUN Jian-chao. Progress of 3D conductive framework for Na metal anode[J]. Chinese Journal of Engineering, 2023, 45(7): 1116-1130. doi: 10.13374/j.issn2095-9389.2021.12.23.002
Citation: LI Tian-jiao, JIANG Fu-yi, YANG Kai, SUN Jian-chao. Progress of 3D conductive framework for Na metal anode[J]. Chinese Journal of Engineering, 2023, 45(7): 1116-1130. doi: 10.13374/j.issn2095-9389.2021.12.23.002

Progress of 3D conductive framework for Na metal anode

doi: 10.13374/j.issn2095-9389.2021.12.23.002
More Information
  • Corresponding author: E-mail: jianchaoabc@163.com
  • Received Date: 2021-12-23
    Available Online: 2022-01-29
  • Publish Date: 2023-07-25
  • Sodium is considered an ideal anode material for high-energy batteries because of its low cost, high natural abundance, low redox potential (?2.71 V vs SHE), and high theoretical specific capacity (1166 mA·h·g?1). However, due to the high reactivity, sodium rapidly reacts with the electrolyte to form an unstable solid electrolyte interface (SEI) layer during stripping/plating cycling. In addition, due to the large size change of sodium, the SEI layer repeatedly breaks and reassembles, resulting in the continuous consumption of sodium and electrolyte, as well as low coulombic efficiency and rapid capacity loss. Simultaneously, due to an uneven electric field distribution on sodium, numerous sodium dendrites generate during the repeated plating/stripping cycles. The growing Na dendrites easily pierce the separator, causing a short circuit and a series of safety issues. The above issues lead to the deterioration of battery performance and safety risks, thus considerably hindering the application of sodium metal batteries. Various studies have been conducted to solve these issues, including electrolyte engineering, artificial SEI layers, current collector and interlayer engineering, solid-state electrolyte engineering, and three-dimensional (3D) frameworks for sodium metal. Among various improvement strategies, the construction of a 3D conductive framework can effectively reduce the local current density, decrease nuclear energy, inhibit Na dendrite growth, and impede volume expansion, thus having a great potential in future applications. In this study, the current research progress in using various 3D conductive frameworks to improve the cycling stability of a sodium metal battery is reviewed, including carbon-based, metal-based, and MXene-based frameworks. Simultaneously, the pros and cons of different 3D conductive framework technologies in recent years are summarized and classified, and the electrochemical performance parameters of different 3D conductive frameworks for sodium metal batteries are compared. Finally, the development prospect and direction of 3D conductive frameworks in sodium metal anodes are discussed from basic research and practical applications. This review provides deeper insights into building more comprehensive and efficient sodium metal anodes. The 3D conductive framework technology can remarkably improve the cycle life and safety of a sodium metal battery. Multistrategy joint research methods will facilitate the practical applications of a sodium metal battery. Further exploration of the deposition behavior of sodium metal is required in the future, and we believe that it can definitely achieve commercial applications with continuous efforts.

     

  • loading
  • [1]
    Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater, 2018, 8(17): 1703137 doi: 10.1002/aenm.201703137
    [2]
    Lee B, Paek E, Mitlin D, et al. Sodium metal anodes: Emerging solutions to dendrite growth. Chem Rev, 2019, 119(8): 5416 doi: 10.1021/acs.chemrev.8b00642
    [3]
    Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334(6058): 928 doi: 10.1126/science.1212741
    [4]
    Liu T F, Zhang Y P, Jiang Z G, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ Sci, 2019, 12(5): 1512 doi: 10.1039/C8EE03727B
    [5]
    Zhou T, Shen J D, Wang Z S, et al. Regulating lithium nucleation and deposition via MOF‐derived Co@C‐modified carbon cloth for stable Li metal anode. Adv Funct Mater, 2020, 30(14): 1909159 doi: 10.1002/adfm.201909159
    [6]
    Ponrouch A, Monti D, Boschin A, et al. Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A, 2015, 3(1): 22 doi: 10.1039/C4TA04428B
    [7]
    Gür T M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ Sci, 2018, 11(10): 2696 doi: 10.1039/C8EE01419A
    [8]
    Liu T F, Zhang Y P, Chen C, et al. Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat Commun, 2019, 10(1): 1965 doi: 10.1038/s41467-019-09933-0
    [9]
    Xia C, Black R, Fernandes R, et al. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem, 2015, 7(6): 496 doi: 10.1038/nchem.2260
    [10]
    Wei S Y, Choudhury S, Xu J, et al. Highly stable sodiumbatteries enabled by functional ionic polymer membranes. Adv Mater, 2017, 29(12): 1605512 doi: 10.1002/adma.201605512
    [11]
    Ma Q X, Chen Z J, Zhong S W, et al. Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy, 2021, 81: 105622 doi: 10.1016/j.nanoen.2020.105622
    [12]
    Schafzahl L, Mahne N, Schafzahl B, et al. Singlet oxygen during cycling of the aprotic sodium-O2 battery. Angew Chem Int Ed, 2017, 56(49): 15728 doi: 10.1002/anie.201709351
    [13]
    Patrike A, Yadav P, Shelke. V, et al. Research progress and perspective on Lithium/Sodium metal anodes for next-generation rechargeable batteries. ChemSusChem, 2022, 15(14): e202200504
    [14]
    Liu W, Sun Q, Yang Y, et al. An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. Chem Commun, 2013, 49(19): 1951 doi: 10.1039/c3cc00085k
    [15]
    Hartmann P, Bender C L, Vra?ar M, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater, 2013, 12(3): 228 doi: 10.1038/nmat3486
    [16]
    Zhang Z J, Chen Y F, Sun S H, et al. Recent progress on three-dimensional nanoarchitecture anode materials for lithium/sodium storage. J Mater Sci Technol, 2022, 119: 167 doi: 10.1016/j.jmst.2021.11.074
    [17]
    Wang H, Matios E, Luo J M, et al. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem Soc Rev, 2020, 49(12): 3783 doi: 10.1039/D0CS00033G
    [18]
    Zhang Y, Wang C W, Pastel G, et al. 3D wettable framework for dendrite‐free alkali metal anodes. Adv Energy Mater, 2018, 8(18): 1800635 doi: 10.1002/aenm.201800635
    [19]
    Li T J, Sun J C, Gao S Z, et al. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv Energy Mater, 2021, 11(7): 2003699 doi: 10.1002/aenm.202003699
    [20]
    Ma C Y, Xu T T, Wang Y. Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater, 2020, 25: 811 doi: 10.1016/j.ensm.2019.09.007
    [21]
    Zeng L Y, Zhou T, Xu X J, et al. General construction of lithiophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route. Sci China Mater, 2022, 65(2): 337 doi: 10.1007/s40843-021-1764-x
    [22]
    He W X, Zuo S Y, Xu X J, et al. Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Mater Chem Front, 2021, 5(5): 2201 doi: 10.1039/D0QM00693A
    [23]
    姚詩言, 曾立艷, 劉軍. 高性能鋰金屬電池負極結構設計及界面強化研究進展. 材料導報, 2022(16):1

    Yao S Y, Zeng L Y, Liu J. Research progress in structure design and interface enhancement of lithium anode for high-performance lithium metal batteries. Mater Rep, 2022(16): 1
    [24]
    Zheng X Y, Gu Z Y, Liu X Y, et al. Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy Environ Sci, 2020, 13(6): 1788 doi: 10.1039/D0EE00694G
    [25]
    Kreissl J J A, Langsdorf D, Tkachenko B A, et al. Incorporating diamondoids as electrolyte additive in the sodium metal anode to mitigate dendrite growth. ChemSusChem, 2020, 13(10): 2661 doi: 10.1002/cssc.201903499
    [26]
    Zhao Y, Liang J W, Sun Q, et al. In situ formation of highly controllable and stable Na3PS4 as a protective layer for Na metal anode. J Mater Chem A, 2019, 7(8): 4119 doi: 10.1039/C8TA10174D
    [27]
    Zheng X Y, Fu H Y, Hu C C, et al. Toward a stable sodium metal anode in carbonate electrolyte: A compact, inorganic alloy interface. J Phys Chem Lett, 2019, 10(4): 707 doi: 10.1021/acs.jpclett.8b03536
    [28]
    Wang H, Wang C L, Matios E, et al. Facile stabilization of the sodium metal anode with additives: Unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew Chem Int Ed Engl, 2018, 57(26): 7734 doi: 10.1002/anie.201801818
    [29]
    Rakov D A, Chen F F, Ferdousi S A, et al. Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nat Mater, 2020, 19(10): 1096 doi: 10.1038/s41563-020-0673-0
    [30]
    Chen Q W, He H, Hou Z, et al. Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes. J Mater Chem A, 2020, 8(32): 16232 doi: 10.1039/D0TA04715E
    [31]
    Luo W, Lin C F, Zhao O, et al. Ultrathin surface coating enables the stable sodium metal anode. Adv Energy Mater, 2017, 7(2): 1601526 doi: 10.1002/aenm.201601526
    [32]
    Xie Y Y, Hu J X, Zhang Z A. A stable carbon host engineering surface defects for room-temperature liquid NaK anode. J Electroanal Chem, 2020, 856: 113676 doi: 10.1016/j.jelechem.2019.113676
    [33]
    Ju Z J, Nai J W, Wang Y, et al. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nat Commun, 2020, 11: 488 doi: 10.1038/s41467-020-14358-1
    [34]
    Lee M E, Kwak H W, Kwak J H, et al. Catalytic pyroprotein seed layers for sodium metal anodes. ACS Appl Mater Interfaces, 2019, 11(13): 12401 doi: 10.1021/acsami.8b15938
    [35]
    Hou Z, Wang W H, Yu Y K, et al. Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode. Energy Storage Mater, 2020, 24: 588 doi: 10.1016/j.ensm.2019.06.026
    [36]
    Zhai L, Yang K, Jiang F Y, et al. High-performance solid-state lithium metal batteries achieved by interface modification. J Energy Chem, 2023, 79: 357
    [37]
    習磊, 張德超, 劉軍. 應用于全固態鋰電池的復合固態電解質研究進展. 中國材料進展, 2021, 40(8):607 doi: 10.7502/j.issn.1674-3962.202012023

    Xi L, Zhang D C, Liu J. Research progress of composite solid electrolytes for all-solid-state lithium batteries. Mater China, 2021, 40(8): 607 doi: 10.7502/j.issn.1674-3962.202012023
    [38]
    Yu X W, Xue L G, Goodenough J B, et al. All-solid-state sodium batteries with a polyethylene glycol diacrylate-Na3Zr2Si2PO12 composite electrolyte. Adv Energy Sustain Res, 2021, 2(1): 2000061 doi: 10.1002/aesr.202000061
    [39]
    Yang J, Liu G Z, Avdeev M, et al. Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Lett, 2020, 5(9): 2835 doi: 10.1021/acsenergylett.0c01432
    [40]
    Oh J A S, Sun J G, Goh M, et al. A robust solid-solid interface using sodium-tin alloy modified metallic sodium anode paving way for all‐solid‐state battery. Adv Energy Mater, 2021, 11(32): 2101228 doi: 10.1002/aenm.202101228
    [41]
    Liu P, Hao H, Celio H, et al. Multifunctional separator allows stable cycling of potassium metal anodes and of potassium metal batteries. Adv Mater, 2022, 34(7): e2105855 doi: 10.1002/adma.202105855
    [42]
    Cui J Y, Wang A X, Li G J, et al. Correction: Composite sodium metal anodes for practical applications. J Mater Chem A, 2020, 8(31): 16024 doi: 10.1039/D0TA90145H
    [43]
    Liu S, Tang S, Zhang X Y, et al. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett, 2017, 17(9): 5862 doi: 10.1021/acs.nanolett.7b03185
    [44]
    Xiong W S, Xia Y, Jiang Y, et al. Highly conductive and robust three-dimensional host with excellent alkali metal infiltration boosts ultrastable lithium and sodium metal anodes. ACS Appl Mater Interfaces, 2018, 10(25): 21254 doi: 10.1021/acsami.8b03572
    [45]
    Eng A Y S, Soni C B, Lum Y, et al. Theory-guided experimental design in battery materials research. Sci Adv, 2022, 8(19): eabm2422 doi: 10.1126/sciadv.abm2422
    [46]
    Lu X, Luo J M, Matios E, et al. Enabling high-performance sodium metal anodes via A sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres. Nano Energy, 2020, 69: 104446 doi: 10.1016/j.nanoen.2020.104446
    [47]
    Xie Y Y, Hu J X, Han Z X, et al. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater, 2020, 30: 1 doi: 10.1016/j.ensm.2020.05.008
    [48]
    Sun B, Xiong P, Maitra U, et al. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv Mater, 2020, 32(18): e1903891 doi: 10.1002/adma.201903891
    [49]
    Zhao Y, Adair K R, Sun X L. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ Sci, 2018, 11(10): 2673 doi: 10.1039/C8EE01373J
    [50]
    Wang Y, Zhu M, Liu H X, et al. Carbon-based current collector materials for sodium metal anodes. New Carbon Mater, 2022, 37(1): 93 doi: 10.1016/S1872-5805(22)60581-X
    [51]
    Fan L L, Li X F. Recent advances in effective protection of sodium metal anode. Nano Energy, 2018, 53: 630 doi: 10.1016/j.nanoen.2018.09.017
    [52]
    Wu F, Zhou J H, Luo R, et al. Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode. Energy Storage Mater, 2019, 22: 376 doi: 10.1016/j.ensm.2019.02.015
    [53]
    Wang H, Wang C L, Matios E, et al. Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes. Nano Lett, 2017, 17(11): 6808 doi: 10.1021/acs.nanolett.7b03071
    [54]
    Wang A, Hu X, Tang H, et al. Processable and moldable sodium-metal anodes. Angew Chem Int Ed Engl, 2017, 56(39): 11921 doi: 10.1002/anie.201703937
    [55]
    Lee Y, Lee J, Lee J, et al. Fluoroethylene carbonate-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes. ACS Appl Mater Interfaces, 2018, 10(17): 15270 doi: 10.1021/acsami.8b02446
    [56]
    Yan k, Zhao S Q, Zhang J Q, et al. Dendrite-free sodium metal batteries enabled by the release of contact strain on flexible and sodiophilic matrix. Nano Lett, 2020, 20(8): 6112 doi: 10.1021/acs.nanolett.0c02215
    [57]
    Liu W, Li P Y, Wang W W, et al. Directional flow-aided sonochemistry yields graphene with tunable defects to provide fundamental insight on sodium metal plating behavior. ACS Nano, 2018, 12(12): 12255 doi: 10.1021/acsnano.8b06051
    [58]
    Wang H, Wang C L, Matios E, et al. Enabling ultrahigh rate and capacity sodium metal anodes with lightweight solid additives. Energy Storage Mater, 2020, 32: 244 doi: 10.1016/j.ensm.2020.07.021
    [59]
    Bao C Y, Wang B, Xie Y, et al. Sodiophilic decoration of a three-dimensional conductive scaffold toward a stable Na metal anode. ACS Sustainable Chem Eng, 2020, 8(14): 5452 doi: 10.1021/acssuschemeng.9b06534
    [60]
    Jin X, Zhao Y, Shen Z H, et al. Interfacial design principle of sodiophilicity-regulated interlayer deposition in a sandwiched sodium metal anode. Energy Storage Mater, 2020, 31: 221 doi: 10.1016/j.ensm.2020.06.040
    [61]
    Yan J, Zhi G, Kong D Z, et al. 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J Mater Chem A, 2020, 8(38): 19843 doi: 10.1039/D0TA05817C
    [62]
    Kim Y J, Lee J H, Yuk S, et al. Tuning sodium nucleation and stripping by the mixed surface of carbon nanotube-sodium composite electrodes for improved reversibility. J Power Sources, 2019, 438: 227005 doi: 10.1016/j.jpowsour.2019.227005
    [63]
    Sun B, Li P, Zhang J, et al. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv Mater, 2018, 31: e1801334
    [64]
    Ye L, Liao M, Zhao T C, et al. A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries. Angew Chem Int Ed Engl, 2019, 58(47): 17054 doi: 10.1002/anie.201910202
    [65]
    Zhao Y, Yang X F, Sun Q, et al. Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers. Energy Storage Mater, 2018, 15: 415
    [66]
    Wang J J, Zhang W H, Zhang C S. Versatile fabrication of anisotropic and superhydrophobic aerogels for highly selective oil absorption. Carbon, 2019, 155: 16 doi: 10.1016/j.carbon.2019.08.049
    [67]
    Chi S S, Qi X G, Hu Y S, et al. 3D flexible carbon felt host for highly stable sodium metal anodes. Adv Energy Mater, 2018, 8(15): 1702764 doi: 10.1002/aenm.201702764
    [68]
    Go W, Kim M H, Park J, et al. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett, 2019, 19(3): 1504 doi: 10.1021/acs.nanolett.8b04106
    [69]
    Li P R, Xu T H, Ding P, et al. Highly reversible Na and K metal anodes enabled by carbon paper protection. Energy Storage Mater, 2018, 15: 8
    [70]
    Zhao C L, Liu L L, Lu Y X, et al. Revealing an interconnected interfacial layer in solid-state polymer sodium batteries. Angew Chem Int Ed Engl, 2019, 58(47): 17026 doi: 10.1002/anie.201909877
    [71]
    Zheng X Y, Li P, Cao Z, et al. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers. Small, 2019, 15(41): e1902688 doi: 10.1002/smll.201902688
    [72]
    Yoon H J, Kim N R, Jin H J, et al. Macroporous catalytic carbon nanotemplates for sodium metal anodes. Adv Energy Mater, 2018, 8(6): 1701261 doi: 10.1002/aenm.201701261
    [73]
    Xiong W S, Jiang Y, Xia Y, et al. A robust 3D host for sodium metal anodes with excellent machinability and cycling stability. Chem Commun (Camb), 2018, 54(68): 9406 doi: 10.1039/C8CC03996H
    [74]
    Li S Y, Liu Q L, Zhou J J, et al. Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li‐philic property enabling highly stable alkali metal batteries. Adv Funct Mater, 2019, 29(19): 1808847 doi: 10.1002/adfm.201808847
    [75]
    Sun J C, Zhang M, Ju P, et al. Long‐life sodium metal anodes achieved by cuprous oxide-modified Ni foam host. Energy Technol, 2020, 8(3): 1901250 doi: 10.1002/ente.201901250
    [76]
    Ye H, Wang C Y, Zuo T T, et al. Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3- type cathodes. Nano Energy, 2018, 48: 369 doi: 10.1016/j.nanoen.2018.03.069
    [77]
    Wu J X, Zou P C, Ihsan-UI-Haq M, et al. Sodiophilically graded gold coating on carbon skeletons for highly stable sodium metal anodes. Small, 2020, 16(40): e2003815 doi: 10.1002/smll.202003815
    [78]
    Chen J Y, Xu X, He Q, et al. Advanced Current collectors for alkali metal anodes. Chem Res Chin Univ, 2020, 36(3): 386 doi: 10.1007/s40242-020-0098-y
    [79]
    Xu Y L, Menon A S, Harks P P R M L, et al. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Mater, 2018, 12: 69 doi: 10.1016/j.ensm.2017.11.011
    [80]
    Wang T S, Liu Y C, Lu Y X, et al. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts. Energy Storage Mater, 2018, 15: 274
    [81]
    Zhang D, Dai A, Fan B F, et al. Three-dimensional ordered macro/mesoporous Cu/Zn as a lithiophilic current collector for dendrite-free lithium metal anode. ACS Appl Mater Interfaces, 2020, 12(28): 31542 doi: 10.1021/acsami.0c09503
    [82]
    Yang W, Yang W, Dong L B, et al. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy, 2021, 80: 105563 doi: 10.1016/j.nanoen.2020.105563
    [83]
    Zheng X Y, Yang W J, Wang Z Q, et al. Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes. Nano Energy, 2020, 69: 104387 doi: 10.1016/j.nanoen.2019.104387
    [84]
    He X, Jin S, Miao L C, et al. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite‐free sodium‐metal electrodes. Angew Chem Int Ed, 2020, 59(38): 16705 doi: 10.1002/anie.202006783
    [85]
    Fang Y Z, Lian R Q, Li H P, et al. Induction of planar sodium growth on MXene (Ti3C2Tx)-modified carbon cloth hosts for flexible sodium metal anodes. ACS Nano, 2020, 14(7): 8744 doi: 10.1021/acsnano.0c03259
    [86]
    Luo J M, Wang C L, Wang H, et al. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv Funct Mater, 2019, 29(3): 1805946 doi: 10.1002/adfm.201805946
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (614) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164