Citation: | ZHAO Rui-lin, JIA Hao-dong, CAO Shu-guang, TONG Zhen-feng, ZHOU Zhang-jian. Microstructure and mechanical properties of 15Ni?15Cr oxide dispersion strengthened austenitic steel[J]. Chinese Journal of Engineering, 2023, 45(1): 107-116. doi: 10.13374/j.issn2095-9389.2021.07.28.001 |
[1] |
徐銤. 快中子堆. 現代物理知識, 2018, 30(4):11
Xu M. Fast neutron reactor. Mod Phys, 2018, 30(4): 11
|
[2] |
Cheon J S, Lee C B, Lee B O, et al. Sodium fast reactor evaluation: Core materials. J Nucl Mater, 2009, 392(2): 324 doi: 10.1016/j.jnucmat.2009.03.021
|
[3] |
Jayakumar T, Mathew M D, Laha K, et al. Materials development for fast reactor applications. Nucl Eng Des, 2013, 265: 1175 doi: 10.1016/j.nucengdes.2013.05.001
|
[4] |
Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J Nucl Mater, 2008, 383(1-2): 189 doi: 10.1016/j.jnucmat.2008.08.044
|
[5] |
Leo J R O, Barroso S P, Fitzpatrick M E, et al. Microstructure, tensile and creep properties of an austenitic ODS 316L steel. Mater Sci Eng A, 2019, 749: 158 doi: 10.1016/j.msea.2019.02.014
|
[6] |
Oka H, Watanabe M, Ohnuki S, et al. Effects of milling process and alloying additions on oxide particle dispersion in austenitic stainless steel. J Nucl Mater, 2014, 447(1-3): 248 doi: 10.1016/j.jnucmat.2014.01.025
|
[7] |
Ganesh S, Karthik P S, Ramakrishna M, et al. Ultra-high strength oxide dispersion strengthened austenitic steel. Mater Sci Eng A, 2021, 814: 141192 doi: 10.1016/j.msea.2021.141192
|
[8] |
Mao X D, Kang S H, Kim T K, et al. Microstructure and mechanical properties of ultrafine-grained austenitic oxide dispersion strengthened steel. Metall Mater Trans A, 2016, 47(11): 5334 doi: 10.1007/s11661-016-3570-z
|
[9] |
Du A B, Feng W, Ma H L, et al. Effects of titanium and silicon on the swelling behavior of 15–15Ti steels by heavy-ion beam irradiation. Acta Metall Sin (Engl Lett)
|
[10] |
Kim T K, Noh S, Kang S H, et al. Development of advanced radiation resistant ODS steel for fast reactor system applications. World J Eng Technol, 2015, 3(3): 125 doi: 10.4236/wjet.2015.33C019
|
[11] |
Dubuisson P, de Carlan Y, Garat V, et al. ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding. J Nucl Mater, 2012, 428(1-3): 6 doi: 10.1016/j.jnucmat.2011.10.037
|
[12] |
Yvon P, le Flem M, Cabet C, et al. Structural materials for next generation nuclear systems: Challenges and the path forward. Nucl Eng Des, 2015, 294: 161 doi: 10.1016/j.nucengdes.2015.09.015
|
[13] |
Li M, Zhou Z J, He P, et al. Microstructure and mechanical property of 12Cr oxide dispersion strengthened ferritic steel for fusion application. Fusion Eng Des, 2010, 85(7-9): 1573 doi: 10.1016/j.fusengdes.2010.04.045
|
[14] |
Mao X D, Kim T K, Kim S S, et al. Crystallographic relationship of YTaO4 particles with matrix in Ta-containing 12Cr ODS steel. J Nucl Mater, 2015, 461: 329 doi: 10.1016/j.jnucmat.2015.03.018
|
[15] |
徐帥, 陳靈芝, 曹書光, 等. 先進核能系統用ODS鋼的顯微組織設計與調控研究進展. 材料導報, 2019, 33(1):78
Xu S, Chen L Z, Cao S G, et al. Research progress on microstructure design and control of ODS steels applied to advanced nuclear energy systems. Mater Rep, 2019, 33(1): 78
|
[16] |
Allen T R, Gan J, Cole J I, et al. Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation. J Nucl Mater, 2008, 375(1): 26 doi: 10.1016/j.jnucmat.2007.11.001
|
[17] |
Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications. Nucl Fusion, 2017, 57(9): 092005 doi: 10.1088/1741-4326/57/9/092005
|
[18] |
Rahmanifard R, Farhangi H, Novinrooz A J. Effect of zirconium and tantalum on the microstructural characteristics of 12YWT ODS steel nanocomposite. J Alloys Compd, 2015, 622: 948 doi: 10.1016/j.jallcom.2014.11.018
|
[19] |
Xu H J, Lu Z, Wang D M, et al. Effect of zirconium addition on the microstructure and mechanical properties of 15Cr-ODS ferritic Steels consolidated by hot isostatic pressing. Fusion Eng Des, 2017, 114: 33 doi: 10.1016/j.fusengdes.2016.11.011
|
[20] |
Cao S G, Zhou Z J. Microstructure and mechanical properties of an ODS ferritic steel with very low Cr content. J Nucl Mater, 2021, 551: 152971 doi: 10.1016/j.jnucmat.2021.152971
|
[21] |
Xu Y L, Zhou Z J, Li M, et al. Fabrication and characterization of ODS austenitic steels. J Nucl Mater, 2011, 417(1-3): 283 doi: 10.1016/j.jnucmat.2010.12.155
|
[22] |
Zhou Z J, Yang S, Chen W H, et al. Processing and characterization of a hipped oxide dispersion strengthened austenitic steel. J Nucl Mater, 2012, 428(1-3): 31 doi: 10.1016/j.jnucmat.2011.08.027
|
[23] |
Oka H, Watanabe M, Kinoshita H, et al. In situ observation of damage structure in ODS austenitic steel during electron irradiation. J Nucl Mater, 2011, 417(1-3): 279 doi: 10.1016/j.jnucmat.2010.12.156
|
[24] |
Zhang H K, Yao Z W, Zhou Z J, et al. Radiation induced microstructures in ODS 316 austenitic steel under dual-beam ions. J Nucl Mater, 2014, 455(1-3): 242 doi: 10.1016/j.jnucmat.2014.06.024
|
[25] |
董紅慶. Zr、Hf−對Fe−Cr−Al系ODS鋼顯微組織和拉伸性能的影響[學位論文]. 天津: 天津大學, 2017
Dong H Q. Effect of ZR, HF Addition on the Microstructure and Tensile Properties of FeCrAl-ODS Steels [Dissertation]. Tianjin: Tianjin University, 2017
|
[26] |
劉健. 國產快堆包殼材料15-15Ti不銹鋼的拉伸行為研究. 產業與科技論壇, 2018, 17(10):45 doi: 10.3969/j.issn.1673-5641.2018.10.022
Liu J. Research on tensile behavior of domestic fast reactor cladding material 15Ni?15Cr stainless steel. Ind Sci Tribune, 2018, 17(10): 45 doi: 10.3969/j.issn.1673-5641.2018.10.022
|
[27] |
Zhuang Y, Zhang X Y, Peng T, et al. Effects of yttrium oxides on the microstructure and mechanical properties of 15-15Ti ODS alloy fabricated by casting. Mater Charact, 2020, 162: 110228 doi: 10.1016/j.matchar.2020.110228
|
[28] |
徐帥, 周張健, 賈皓東. 先進反應堆用ODS F/M鋼的強韌性匹配研究進展. 原子能科學技術, 2019, 53(10):1885
Xu S, Zhou Z J, Jia H D. Research progress and prospect of strength-ductility trade-off about irradiation resistant ODS F/M steel. At Energy Sci Technol, 2019, 53(10): 1885
|