<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
Volume 44 Issue 6
May  2022
Turn off MathJax
Article Contents
XU Gang, LI Min, XU Jin-wu. Application of machine learning in automatic discrimination of product quality of deep drawn steel[J]. Chinese Journal of Engineering, 2022, 44(6): 1062-1071. doi: 10.13374/j.issn2095-9389.2021.05.08.002
Citation: XU Gang, LI Min, XU Jin-wu. Application of machine learning in automatic discrimination of product quality of deep drawn steel[J]. Chinese Journal of Engineering, 2022, 44(6): 1062-1071. doi: 10.13374/j.issn2095-9389.2021.05.08.002

Application of machine learning in automatic discrimination of product quality of deep drawn steel

doi: 10.13374/j.issn2095-9389.2021.05.08.002
More Information
  • Corresponding author: E-mail: watermoon999@126.com
  • Received Date: 2021-05-08
    Available Online: 2021-10-15
  • Publish Date: 2022-06-25
  • In process industries, the discrimination of final product quality must be implemented in the manufacturing process. At present, the primary method is “after spot test ward,” but there is no other way to realize online automatic discrimination for all products, which frequently leads to customer return purchases and complaints about the product quality, and annual economic loss of 10 billion Yuan in Chinese steel enterprises. This paper proposed online product quality automatic discrimination method based on machine learning to realize online automatic discrimination for all products. First, multidimensional process parameters were mapped into a low-dimensional data set using nonlinear multidimensional parity scaling (MDPS), and the data set is clustered. The distribution feature in the data set was analyzed. The quality index values were then transformed into a low-dimensional map with the class labels determined by process parameter clustering, and the diverse class margins were determined using a support vector machine (SVM) with L2-soft margins. The kernel method set was used to reduce the number of support vectors to simplify the class boundary, and the reduced set determined the actual class margins. Finally, the quality indexes were predicted using machine learning algorithms, such as back-propagation network (BPN), long short-team memory (LSTM), kernel partial least squares (KPLS), and k-nearest neighbors (KNN), including the online automatic discrimination of product quality was realized using the determined class margins and the predicted values of quality indexes. The accuracy of the online automatic discrimination of steel types is up to 97% in the training stage and up to 96% in the testing stage based on industrial production data of interstitial-free (IF) steel.

     

  • loading
  • [1]
    柴天佑. 工業過程控制系統研究現狀與發展方向. 中國科學:信息科學, 2016, 46(8):1003

    Chai T Y. Industrial process control systems: Research status and development direction. Sci Sin (Informationis), 2016, 46(8): 1003
    [2]
    Gehrmann C, Gunnarsson M. A digital twin based industrial automation and control system security architecture. IEEE Trans Ind Inform, 2020, 16(1): 669 doi: 10.1109/TII.2019.2938885
    [3]
    中國電子技術標準化研究院. 信息物理系統白皮書(2017) [J/OL]. 網絡在線 (2007-03-02) [2022-02-22]. http://www.cesi.cn/201703/2251.html

    China Electronics Standardization Institute. Hargrove grindability index of the coal blended [J/OL]. Website Online (2007-03-02) [2022-02-22]. http://www.cesi.cn/201703/2251.html
    [4]
    Wang L H, T?rngren M, Onori M. Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst, 2015, 37: 517 doi: 10.1016/j.jmsy.2015.04.008
    [5]
    張彩霞, 程良倫, 王向東. 基于信息物理融合系統的智能制造架構研究. 計算機科學, 2013, 40(S1): 37

    Zhang C X, Cheng L L, Wang X D. Research on architecture of intelligent manufacturing based on cyber-physical system. Comput Sci, 2013, 40(Supple 1): 37
    [6]
    徐鋼. CPS在冶金產品質量在線管控中應用研究[學位論文]. 北京: 北京科技大學, 2019

    Xu G. Application Research of CPS in On-Line Quality Control to Metallurgical Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [7]
    Michniewicz J, Reinhart G. Cyber-Physical-Robotics - Modelling of modular robot cells for automated planning and execution of assembly tasks. Mechatronics, 2016, 34: 170 doi: 10.1016/j.mechatronics.2015.04.012
    [8]
    Penas O, Plateaux R, Patalano S, et al. Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems. Comput Ind, 2017, 86: 52 doi: 10.1016/j.compind.2016.12.001
    [9]
    Pirvu B C, Zamfirescu C B, Gorecky D. Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station. Mechatronics, 2016, 34: 147 doi: 10.1016/j.mechatronics.2015.08.010
    [10]
    Morgan J, O’Donnell G E. Multi-sensor process analysis and performance characterisation in CNC turning—a cyber physical system approach. Int J Adv Manuf Technol, 2017, 92(1-4): 855 doi: 10.1007/s00170-017-0113-8
    [11]
    Tao F, Cheng J F, Qi Q L. IIHub: an industrial Internet-of-things hub toward smart manufacturing based on cyber-physical system. IEEE Trans Ind Inform, 2018, 14(5): 2271 doi: 10.1109/TII.2017.2759178
    [12]
    Gehrmann C, Gunnarsson M. A digital twin based industrial automation and control system security architecture. IEEE Trans Ind Inform, 2020, 16(1): 669 doi: 10.1109/TII.2019.2938885
    [13]
    Wang J J, Ye L K, Gao R X, et al. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. Int J Prod Res, 2019, 57(12): 3920 doi: 10.1080/00207543.2018.1552032
    [14]
    Knapp G L, Mukherjee T, Zuback J S, et al. Building blocks for a digital twin of additive manufacturing. Acta Mater, 2017, 135: 390 doi: 10.1016/j.actamat.2017.06.039
    [15]
    Barricelli B R, Casiraghi E, Fogli D. A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access, 2019, 7: 167653 doi: 10.1109/ACCESS.2019.2953499
    [16]
    林忠欽, 來新民, 金隼, 等. 復雜產品制造精度控制的數字化方法及其發展趨勢. 機械工程學報, 2013, 49(6):103 doi: 10.3901/JME.2013.06.103

    Lin Z Q, Lai X M, Jin S, et al. Digital methods of complex product manufacturing precision control and its development trend. J Mech Eng, 2013, 49(6): 103 doi: 10.3901/JME.2013.06.103
    [17]
    徐鋼, 張曉彤, 黎敏, 等. 基于嵌入式CPS模型的產品質量在線管控方法. 機械工程學報, 2017, 53(12):94 doi: 10.3901/JME.2017.12.094

    Xu G, Zhang X T, Li M, et al. Online monitoring and control method of product quality based on embedded cyber-physical system models. J Mech Eng, 2017, 53(12): 94 doi: 10.3901/JME.2017.12.094
    [18]
    徐鋼, 張曉彤, 黎敏, 等. 基于統計過程控制的流程工業工藝規范制定方法. 機械工程學報, 2019, 55(8):208 doi: 10.3901/JME.2019.08.208

    Xu G, Zhang X T, Li M, et al. A method of establishing process specifications in process industry based on statistical process control. J Mech Eng, 2019, 55(8): 208 doi: 10.3901/JME.2019.08.208
    [19]
    Xu G, Li M, Xu J W. Application research of on-line quality control method to metallurgical products // 2019 IEEE International Conference on Industrial Engineering and Engineering Management. Macao, 2019: 390
    [20]
    Morgan D, Jacobs R. Opportunities and challenges for machine learning in materials science. Annu Rev Mater Res, 2020, 50: 71 doi: 10.1146/annurev-matsci-070218-010015
    [21]
    Arróyave R, McDowell D L. Systems approaches to materials design: Past, present, and future. Annu Rev Mater Res, 2019, 49: 103 doi: 10.1146/annurev-matsci-070218-125955
    [22]
    Rosenbrock C W, Gubaev K, Shapeev A V, et al. Machine-learned interatomic potentials for alloys and alloy phase diagrams. Npj Comput Mater, 2021, 7: 24 doi: 10.1038/s41524-020-00477-2
    [23]
    Fan Y S, Yang X G, Shi D Q, et al. Quantitative mapping of service process-microstructural degradation-property deterioration for a Ni-based superalloy based on chord length distribution imaging process. Mater Des, 2021, 203: 109561 doi: 10.1016/j.matdes.2021.109561
    [24]
    Hart G L W ", Mueller T, Toher C, et al. Machine learning for alloys. Nat Rev Mater, 2021, 6(8): 730 doi: 10.1038/s41578-021-00340-w
    [25]
    Kondo R, Yamakawa S, Masuoka Y, et al. Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics. Acta Mater, 2017, 141: 29 doi: 10.1016/j.actamat.2017.09.004
    [26]
    Wang C, Shi D Q, Li S L. A study on establishing a microstructure-related hardness model with precipitate segmentation using deep learning method. Materials, 2020, 13(5): 1256 doi: 10.3390/ma13051256
    [27]
    Kipf T, Welling M. Semi-supervised classification with graph convolutional networks.https://doi.org/10.48550/arXiv.1609.02907
    [28]
    Cao N D, Kipf T. MolGAN: An implicit generative model for small molecular graphs.https://doi.org/10.48550/arXiv.1805.11973
    [29]
    Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004
    [30]
    Cutkosky A, Orabona F. Black-box reductions for parameter-free online learning in Banach spaces.https://doi.org/10.48550/arXiv.1802.06293
    [31]
    Mesbah A. Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Syst Mag, 2016, 36(6): 30 doi: 10.1109/MCS.2016.2602087
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (1161) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164