Citation: | XU Gang, LI Min, XU Jin-wu. Application of machine learning in automatic discrimination of product quality of deep drawn steel[J]. Chinese Journal of Engineering, 2022, 44(6): 1062-1071. doi: 10.13374/j.issn2095-9389.2021.05.08.002 |
[1] |
柴天佑. 工業過程控制系統研究現狀與發展方向. 中國科學:信息科學, 2016, 46(8):1003
Chai T Y. Industrial process control systems: Research status and development direction. Sci Sin (Informationis)
|
[2] |
Gehrmann C, Gunnarsson M. A digital twin based industrial automation and control system security architecture. IEEE Trans Ind Inform, 2020, 16(1): 669 doi: 10.1109/TII.2019.2938885
|
[3] |
中國電子技術標準化研究院. 信息物理系統白皮書(2017) [J/OL]. 網絡在線 (2007-03-02) [2022-02-22]. http://www.cesi.cn/201703/2251.html
China Electronics Standardization Institute. Hargrove grindability index of the coal blended [J/OL]. Website Online (2007-03-02) [2022-02-22]. http://www.cesi.cn/201703/2251.html
|
[4] |
Wang L H, T?rngren M, Onori M. Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst, 2015, 37: 517 doi: 10.1016/j.jmsy.2015.04.008
|
[5] |
張彩霞, 程良倫, 王向東. 基于信息物理融合系統的智能制造架構研究. 計算機科學, 2013, 40(S1): 37
Zhang C X, Cheng L L, Wang X D. Research on architecture of intelligent manufacturing based on cyber-physical system. Comput Sci, 2013, 40(Supple 1): 37
|
[6] |
徐鋼. CPS在冶金產品質量在線管控中應用研究[學位論文]. 北京: 北京科技大學, 2019
Xu G. Application Research of CPS in On-Line Quality Control to Metallurgical Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[7] |
Michniewicz J, Reinhart G. Cyber-Physical-Robotics - Modelling of modular robot cells for automated planning and execution of assembly tasks. Mechatronics, 2016, 34: 170 doi: 10.1016/j.mechatronics.2015.04.012
|
[8] |
Penas O, Plateaux R, Patalano S, et al. Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems. Comput Ind, 2017, 86: 52 doi: 10.1016/j.compind.2016.12.001
|
[9] |
Pirvu B C, Zamfirescu C B, Gorecky D. Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station. Mechatronics, 2016, 34: 147 doi: 10.1016/j.mechatronics.2015.08.010
|
[10] |
Morgan J, O’Donnell G E. Multi-sensor process analysis and performance characterisation in CNC turning—a cyber physical system approach. Int J Adv Manuf Technol, 2017, 92(1-4): 855 doi: 10.1007/s00170-017-0113-8
|
[11] |
Tao F, Cheng J F, Qi Q L. IIHub: an industrial Internet-of-things hub toward smart manufacturing based on cyber-physical system. IEEE Trans Ind Inform, 2018, 14(5): 2271 doi: 10.1109/TII.2017.2759178
|
[12] |
Gehrmann C, Gunnarsson M. A digital twin based industrial automation and control system security architecture. IEEE Trans Ind Inform, 2020, 16(1): 669 doi: 10.1109/TII.2019.2938885
|
[13] |
Wang J J, Ye L K, Gao R X, et al. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. Int J Prod Res, 2019, 57(12): 3920 doi: 10.1080/00207543.2018.1552032
|
[14] |
Knapp G L, Mukherjee T, Zuback J S, et al. Building blocks for a digital twin of additive manufacturing. Acta Mater, 2017, 135: 390 doi: 10.1016/j.actamat.2017.06.039
|
[15] |
Barricelli B R, Casiraghi E, Fogli D. A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access, 2019, 7: 167653 doi: 10.1109/ACCESS.2019.2953499
|
[16] |
林忠欽, 來新民, 金隼, 等. 復雜產品制造精度控制的數字化方法及其發展趨勢. 機械工程學報, 2013, 49(6):103 doi: 10.3901/JME.2013.06.103
Lin Z Q, Lai X M, Jin S, et al. Digital methods of complex product manufacturing precision control and its development trend. J Mech Eng, 2013, 49(6): 103 doi: 10.3901/JME.2013.06.103
|
[17] |
徐鋼, 張曉彤, 黎敏, 等. 基于嵌入式CPS模型的產品質量在線管控方法. 機械工程學報, 2017, 53(12):94 doi: 10.3901/JME.2017.12.094
Xu G, Zhang X T, Li M, et al. Online monitoring and control method of product quality based on embedded cyber-physical system models. J Mech Eng, 2017, 53(12): 94 doi: 10.3901/JME.2017.12.094
|
[18] |
徐鋼, 張曉彤, 黎敏, 等. 基于統計過程控制的流程工業工藝規范制定方法. 機械工程學報, 2019, 55(8):208 doi: 10.3901/JME.2019.08.208
Xu G, Zhang X T, Li M, et al. A method of establishing process specifications in process industry based on statistical process control. J Mech Eng, 2019, 55(8): 208 doi: 10.3901/JME.2019.08.208
|
[19] |
Xu G, Li M, Xu J W. Application research of on-line quality control method to metallurgical products // 2019 IEEE International Conference on Industrial Engineering and Engineering Management. Macao, 2019: 390
|
[20] |
Morgan D, Jacobs R. Opportunities and challenges for machine learning in materials science. Annu Rev Mater Res, 2020, 50: 71 doi: 10.1146/annurev-matsci-070218-010015
|
[21] |
Arróyave R, McDowell D L. Systems approaches to materials design: Past, present, and future. Annu Rev Mater Res, 2019, 49: 103 doi: 10.1146/annurev-matsci-070218-125955
|
[22] |
Rosenbrock C W, Gubaev K, Shapeev A V, et al. Machine-learned interatomic potentials for alloys and alloy phase diagrams. Npj Comput Mater, 2021, 7: 24 doi: 10.1038/s41524-020-00477-2
|
[23] |
Fan Y S, Yang X G, Shi D Q, et al. Quantitative mapping of service process-microstructural degradation-property deterioration for a Ni-based superalloy based on chord length distribution imaging process. Mater Des, 2021, 203: 109561 doi: 10.1016/j.matdes.2021.109561
|
[24] |
Hart G L W ", Mueller T, Toher C, et al. Machine learning for alloys. Nat Rev Mater, 2021, 6(8): 730 doi: 10.1038/s41578-021-00340-w
|
[25] |
Kondo R, Yamakawa S, Masuoka Y, et al. Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics. Acta Mater, 2017, 141: 29 doi: 10.1016/j.actamat.2017.09.004
|
[26] |
Wang C, Shi D Q, Li S L. A study on establishing a microstructure-related hardness model with precipitate segmentation using deep learning method. Materials, 2020, 13(5): 1256 doi: 10.3390/ma13051256
|
[27] |
Kipf T, Welling M. Semi-supervised classification with graph convolutional networks.https://doi.org/10.48550/arXiv.1609.02907
|
[28] |
Cao N D, Kipf T. MolGAN: An implicit generative model for small molecular graphs.https://doi.org/10.48550/arXiv.1805.11973
|
[29] |
Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004
|
[30] |
Cutkosky A, Orabona F. Black-box reductions for parameter-free online learning in Banach spaces.https://doi.org/10.48550/arXiv.1802.06293
|
[31] |
Mesbah A. Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Syst Mag, 2016, 36(6): 30 doi: 10.1109/MCS.2016.2602087
|