Citation: | FU Qiang, ZHANG Xiang, ZHAO Min, ZHANG Chun-hua, HE Wei. Research progress on the wind tunnel experiment of a bionic flapping-wing aerial vehicle[J]. Chinese Journal of Engineering, 2022, 44(4): 767-779. doi: 10.13374/j.issn2095-9389.2021.04.30.004 |
[1] |
尹曌, 賀威, 鄒堯, 等. 基于“雁陣效應”的撲翼飛行機器人高效集群編隊研究. 自動化學報, 2021, 47(6):1355
Yin Z, He W, Zou Y, et al. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect. Acta Autom Sin, 2021, 47(6): 1355
|
[2] |
解亞軍, 葉正寅, 白靜, 等. 微型飛行器測量天平設計與風洞試驗. 實驗流體力學, 2006, 20(1):23 doi: 10.3969/j.issn.1672-9897.2006.01.006
Xie Y J, Ye Z Y, Bai J, et al. Design of strain-gage balances for micro air vehicles and their experiments in wind tunnel. J Exp Fluid Mech, 2006, 20(1): 23 doi: 10.3969/j.issn.1672-9897.2006.01.006
|
[3] |
熊超, 宋筆鋒. 微型撲翼飛行器氣動機理風洞試驗研究. 科學技術與工程, 2007, 7(11):2576 doi: 10.3969/j.issn.1671-1815.2007.11.027
Xiong C, Song B F. Experimental investigation of aerodynamic characteristics of flapping-wing MAV in wind tunnel. Sci Technol Eng, 2007, 7(11): 2576 doi: 10.3969/j.issn.1671-1815.2007.11.027
|
[4] |
Katzmayr R. Effect of periodic changes of angle of attack on behavior of airfoils. NACA, 1922: 147
|
[5] |
Pennycuick C J. A wind-tunnel study of gliding flight in the pigeon Columba livia. J Exp Biol, 1968, 49(3): 509 doi: 10.1242/jeb.49.3.509
|
[6] |
付鵬. 微型撲翼飛行器風洞實驗方法與應用研究[學位論文]. 西安: 西北工業大學, 2017
Fu P. Research on Wind Tunnel Experimental Method and Application of Flapping-Wing Micro Air Vehicle [Dissertation]. Xi’an: Northwestern Polytechnical University, 2017
|
[7] |
Rojratsirikul P, Wang Z, Gursul I. Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils. J Fluids Struct, 2010, 26(3): 359 doi: 10.1016/j.jfluidstructs.2010.01.005
|
[8] |
賀德馨. 風洞天平. 北京: 國防工業出版社, 2003
He D X. Wind Tunnel Balance. Beijing: National Defense Industry Press, 2003
|
[9] |
錢愛文, 趙妞. 撲翼飛行器升力測試裝置研究現狀. 科學技術創新, 2019(18):53 doi: 10.3969/j.issn.1673-1328.2019.18.030
Qian A W, Zhao N. Research status of lift test device for flapping wing aerial vehicle. Sci Technol Innov, 2019(18): 53 doi: 10.3969/j.issn.1673-1328.2019.18.030
|
[10] |
付強, 張樹禹, 王久斌, 等. 基于外部單目視覺的仿生撲翼飛行器室內定高控制. 工程科學學報, 2020, 42(2):249
Fu Q, Zhang S Y, Wang J B, et al. Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on offboard monocular vision. Chin J Eng, 2020, 42(2): 249
|
[11] |
賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685
He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Autom Sin, 2017, 43(5): 685
|
[12] |
付強, 陳向陽, 鄭子亮, 等. 仿生撲翼飛行器的視覺感知系統研究進展. 工程科學學報, 2019, 41(12):1512
Fu Q, Chen X Y, Zheng Z L, et al. Research progress on visual perception system of bionic flapping-wing aerial vehicles. Chin J Eng, 2019, 41(12): 1512
|
[13] |
Chen Y F, Zhao H C, Mao J, et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature, 2019, 575(7782): 324 doi: 10.1038/s41586-019-1737-7
|
[14] |
Yang W Q, Wang L G, Song B F. Dove: A biomimetic flapping-wing micro air vehicle. Int J Micro Air Veh, 2018, 10(1): 70 doi: 10.1177/1756829317734837
|
[15] |
He W, Mu X X, Zhang L, et al. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA J Autom Sin, 2021, 8(1): 148 doi: 10.1109/JAS.2020.1003417
|
[16] |
Pan E Z, Liang X, Xu W F. Development of vision stabilizing system for a large-scale flapping-wing robotic bird. IEEE Sens J, 2020, 20(14): 8017 doi: 10.1109/JSEN.2020.2981173
|
[17] |
Zhang Y L, Sun M. Erratum to: Dynamic flight stability of hovering model insects: Theory versus simulation using equations of motion coupled with Navier-Stokes equations. Acta Mech Sin, 2011, 27(2): 308 doi: 10.1007/s10409-011-0454-8
|
[18] |
Tubaro P L. A comparative study of aerodynamic function and flexural stiffness of outer tail feathers in birds. J Avian Biol, 2003, 34(3): 243 doi: 10.1034/j.1600-048X.2003.03084.x
|
[19] |
昂海松, 曾銳, 段文博, 等. 柔性撲翼微型飛行器升力和推力機理的風洞試驗和飛行試驗. 航空動力學報, 2007, 22(11):1838 doi: 10.3969/j.issn.1000-8055.2007.11.010
Ang H S, Zeng R, Duan W B, et al. Aerodynamic experimental investigation for mechanism of lift and thrust of flexible flapping-wing MAV. J Aerosp Power, 2007, 22(11): 1838 doi: 10.3969/j.issn.1000-8055.2007.11.010
|
[20] |
Mazaheri K, Ebrahimi A. Experimental investigation on aerodynamic performance of a flapping wing vehicle in forward flight. J Fluids Struct, 2011, 27(4): 586 doi: 10.1016/j.jfluidstructs.2011.04.001
|
[21] |
Tobalske B, Dial K. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J Exp Biol, 1996, 199: 263 doi: 10.1242/jeb.199.2.263
|
[22] |
Park K J, Rosén M, Hedenström A. Flight kinematics of the barn swallow (Hirundo rustica) over a wide range of speeds in a wind tunnel. J Exp Biol, 2001, 204(Pt 15): 2741
|
[23] |
熊超. 微型撲翼飛行器尾翼的分析與設計方法研究[學位論文]. 西安: 西北工業大學, 2007
Xiong C. Analysis and Design Method Research of Tail Fin of Miniature Flapping Wing Aerial Vehicle [Dissertation]. Xi’an: Northwestern Polytechnical University, 2007
|
[24] |
李喜喆. 多段仿生撲翼機柔性翅翼及尾翼氣動分析[學位論文]. 天津: 中國民航大學, 2018
Li X Z. Aerodynamic Analysis of Flexible Wing and Tail with Multi-Segment Flapping Vehicle [Dissertation]. Tianjin: Civil Aviation University of China, 2018
|
[25] |
黃燦, 李文彬, 趙衛凱, 等. 撲翼飛行器柔性尾翼動力學模型的建立與研究. 兵器裝備工程學報, 2020, 41(5):9 doi: 10.11809/bqzbgcxb2020.05.003
Huang C, Li W B, Zhao W K, et al. Establishment and research of flexible tail dynamics model of flapping-wing aircraft. J Ordnance Equip Eng, 2020, 41(5): 9 doi: 10.11809/bqzbgcxb2020.05.003
|
[26] |
Lee J S, Kim J K, Han J H, et al. Periodic tail motion linked to wing motion affects the longitudinal stability of ornithopter flight. J Bionic Eng, 2012, 9(1): 18 doi: 10.1016/S1672-6529(11)60093-0
|
[27] |
Tsai B J, Fu Y C. Design and aerodynamic analysis of a flapping-wing micro aerial vehicle. Aerosp Sci Technol, 2009, 13(7): 383 doi: 10.1016/j.ast.2009.07.007
|
[28] |
Su J Y, Yang J T. Analysis of the aerodynamic force in an eye-stabilized flapping flyer. Bioinspir Biomim, 2013, 8(4): 046010 doi: 10.1088/1748-3182/8/4/046010
|
[29] |
張家銘. “航空之父”茹科夫斯基的成長之路. 科技風, 2015(8):2 doi: 10.3969/j.issn.1671-7341.2015.08.002
Zhang J M. “Father of Aviation” Zhukovsky’s growth road. Technol Wind, 2015(8): 2 doi: 10.3969/j.issn.1671-7341.2015.08.002
|
[30] |
Ashraf M A, Young J, Lai J C S. Reynolds number, thickness and camber effects on flapping airfoil propulsion. J Fluids Struct, 2011, 27(2): 145 doi: 10.1016/j.jfluidstructs.2010.11.010
|
[31] |
Unger R, Haupt M C, Horst P, et al. Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow. J Fluids Struct, 2012, 28: 72 doi: 10.1016/j.jfluidstructs.2011.08.009
|
[32] |
蔡常睿. 基于信鴿翅膀的仿生機翼氣動性能研究[學位論文]. 長春: 吉林大學, 2018
Cai C R. Aerodynamic Performance Research of Bionic Wing Based on Pigeon Wings [Dissertation]. Changchun: Jilin University, 2018
|
[33] |
史繼拓, 華欣, 王宏偉, 等. 基于仿海鷗翅翼構型的機翼氣動性能分析. 機械科學與技術, 2017, 36(增刊1): 13
Shi J T, Hua X, Wang H W, et al. Based on imitation of seagulls wings configuration wing aerodynamic performance analysis. Mech Sci Technol Aerosp Eng, 2017, 36(Suppl 1): 13
|
[34] |
邵立民, 宋筆鋒, 熊超, 等. 微型撲翼飛行器風洞試驗初步研究. 航空學報, 2007, 28(2):275 doi: 10.3321/j.issn:1000-6893.2007.02.004
Shao L M, Song B F, Xiong C, et al. Experimental investigation of flapping-wing MAV in wind tunnel. Acta Aeronaut et Astronaut Sin, 2007, 28(2): 275 doi: 10.3321/j.issn:1000-6893.2007.02.004
|
[35] |
張亞鋒, 李郁, 田衛軍. 撲動幅值角對仿生撲翼氣動力特性的影響. 機械工程與自動化, 2019(1):18 doi: 10.3969/j.issn.1672-6413.2019.01.007
Zhang Y F, Li Y, Tian W J. Effects of flapping amplitude angle on aerodynamic force of flapping wing micro air vehicle. Mech Eng Autom, 2019(1): 18 doi: 10.3969/j.issn.1672-6413.2019.01.007
|
[36] |
李康康, 陳巍巍. 撲翼的變剛度設計及其對升力和推力的影響. 航空學報, 2020, 41(11):423785
Li K K, Chen W W. Variable stiffness design of flapping wings and its effects on lift and thrust. Acta Aeronaut et Astronaut Sin, 2020, 41(11): 423785
|
[37] |
石成明, 聶小芳, 周襲明. 串列翼對撲翼飛行器推進性能影響的風洞實驗研究//慶祝中國力學學會成立60周年大會論文集. 北京, 2017: 972
Shi C M, Nie X F, Zhou X M. Wind tunnel experimental study on the effect of tandem wings on the propulsion performance of flapping wing aerial vehicle // Celebration of the 60th Anniversary of the Chinese Society of Mechanics. Beijing: 2017: 972
|
[38] |
Warkentin J, DeLaurier J. Experimental aerodynamic study of tandem flapping membrane wings. J Aircr, 2007, 44(5): 1653 doi: 10.2514/1.28160
|
[39] |
付鵬, 宋筆鋒, 梁少然, 等. 撲翼的推力特性與功率特性的實驗研究. 西北工業大學學報, 2016, 34(6):976 doi: 10.3969/j.issn.1000-2758.2016.06.008
Fu P, Song B F, Liang S R, et al. An experimental research about the characteristics of thrust and power of FMAV. J Northwest Polytech Univ, 2016, 34(6): 976 doi: 10.3969/j.issn.1000-2758.2016.06.008
|
[40] |
Dickinson M H. Wing rotation and the aerodynamic basis of insect flight. Science, 1999, 284(5422): 1954 doi: 10.1126/science.284.5422.1954
|
[41] |
金曉怡, 顏景平, 周建華. 仿生撲翼飛行機器人柔性翅試驗研究及其理論解釋. 中國機械工程, 2007, 18(9):1028 doi: 10.3321/j.issn:1004-132X.2007.09.006
Jin X Y, Yan J P, Zhou J H. Experimental research on the flexible wing and its theoretical explanation for the bionics flapping aerocraft. China Mech Eng, 2007, 18(9): 1028 doi: 10.3321/j.issn:1004-132X.2007.09.006
|
[42] |
Wootton R J. The mechanical design of insect wings. Sci Am, 1990, 263(5): 114 doi: 10.1038/scientificamerican1190-114
|
[43] |
曾理江, 宋德強, 郝群. 昆蟲運動機理的研究. 光學技術, 1999, 25(6):18 doi: 10.3321/j.issn:1002-1582.1999.06.004
Zeng L J, Song D Q, Hao Q. Mechanism on the wing kinematics of insects. Opt Technol, 1999, 25(6): 18 doi: 10.3321/j.issn:1002-1582.1999.06.004
|
[44] |
Shang J K, Combes S A, Finio B M, et al. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspir Biomim, 2009, 4(3): 036002 doi: 10.1088/1748-3182/4/3/036002
|
[45] |
Muniappan A, Baskar V, Duriyanandhan V. Lift and thrust characteristics of flapping wing micro air vehicle (MAV) // 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, 2005: 1055
|
[46] |
Ryu S, Kwon U, Kim H J. Autonomous flight and vision-based target tracking for a flapping-wing MAV // 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, 2016: 5645
|
[47] |
陸冠廷. 四翼撲翼機氣動性能分析[學位論文]. 天津: 中國民航大學, 2019
Lu G T. Aerodynamic Performance Analysis of Four-Wing Flapping Aircraft [Dissertation]. Tianjin: Civil Aviation University of China, 2019
|
[48] |
Nakata T, Liu H, Tanaka Y, et al. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle. Bioinspir Biomim, 2011, 6(4): 045002 doi: 10.1088/1748-3182/6/4/045002
|
[49] |
Yang L J, Kao A, Hsu C K. Wing stiffness on light flapping micro aerial vehicles. J Aircr, 2012, 49(2): 42
|
[50] |
Okamoto M, Yasuda K, Azuma A. Aerodynamic characteristics of the wings and body of a dragonfly. J Exp Biol, 1996, 199(pt 2): 281
|
[51] |
Vogel S. Flight in Drosophila: II. Aerodynamic characteristics of fly wing sand wing models. I. J Exp Biol, 1967, 46(3): 431
|
[52] |
張福梁. 仿蠅類撲翼微飛行器傳動系統的實驗研究[學位論文]. 大連: 大連理工大學, 2016
Zhang F L. Experimental Research on the Transmission System of Fly-Like Flapping Wing Micro Air Vehicle [Dissertation]. Dalian: Dalian University of Technology, 2016
|
[53] |
Feng B B, Chen D R, Wang J D, et al. Bionic research on bird feather for drag reduction. Adv Mech Eng, 2015, 7(2): 849294 doi: 10.1155/2014/849294
|
[54] |
Hord K, Liang Y S. Numerical investigation of the aerodynamic and structural characteristics of a corrugated airfoil. J Aircr, 2012, 49(3): 749 doi: 10.2514/1.C031135
|
[55] |
Kim W K, Ko J H, Park H C, et al. Effects of corrugation of the dragonfly wing on gliding performance. J Theor Biol, 2009, 260(4): 523 doi: 10.1016/j.jtbi.2009.07.015
|
[56] |
Levy D E, Seifert A. Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000. Phys Fluids, 2009, 21(7): 071901 doi: 10.1063/1.3166867
|