Citation: | NAN Jing, JIAN Zhong-hua, NING Chuan-feng, DAI Wei. Lightweight human activity recognition learning model[J]. Chinese Journal of Engineering, 2022, 44(6): 1072-1079. doi: 10.13374/j.issn2095-9389.2021.03.18.001 |
[1] |
Mukherjee D, Mondal R, Singh P K, et al. EnsemConvNet: a deep learning approach for human activity recognition using smartphone sensors for healthcare applications. Multimed Tools Appl, 2020, 79(41-42): 31663 doi: 10.1007/s11042-020-09537-7
|
[2] |
Zhuang Z D, Xue Y. Sport-related human activity detection and recognition using a smartwatch. Sensors (Basel)
|
[3] |
Ibrahim A A, Küderle A, Ga?ner H, et al. Inertial sensor-based gait parameters reflect patient-reported fatigue in multiple sclerosis. J Neuroeng Rehabilitation, 2020, 17(1): 165 doi: 10.1186/s12984-020-00798-9
|
[4] |
Hassan M M, Ullah S, Hossain M S, et al. An end-to-end deep learning model for human activity recognition from highly sparse body sensor data in Internet of Medical Things environment. J Supercomput, 2021, 77(3): 2237 doi: 10.1007/s11227-020-03361-4
|
[5] |
Igwe O M, Wang Y, Giakos G C, et al. Human activity recognition in smart environments employing margin setting algorithm. J Ambient Intell Humaniz Comput, 2020: 1
|
[6] |
Fang H Q, Tang P, Si H. Feature selections using minimal redundancy maximal relevance algorithm for human activity recognition in smart home environments. J Healthc Eng, 2020, 2020: 1
|
[7] |
Heinrich K M, Spencer V, Fehl N, et al. Mission essential fitness: Comparison of functional circuit training to traditional army physical training for active duty military. Mil Med, 2012, 177(10): 1125 doi: 10.7205/MILMED-D-12-00143
|
[8] |
Foerster F, Smeja M, Fahrenberg J. Detection of posture and motion by accelerometry: A validation study in ambulatory monitoring. Comput Hum Behav, 1999, 15(5): 571 doi: 10.1016/S0747-5632(99)00037-0
|
[9] |
Bharti P, De D, Chellappan S, et al. HuMAn: Complex activity recognition with multi-modal multi-positional body sensing. IEEE Trans Mob Comput, 2018, 18(4): 857
|
[10] |
Chen Z H, Jiang C Y, Xie L H. A novel ensemble ELM for human activity recognition using smartphone sensors. IEEE Trans Ind Inform, 2019, 15(5): 2691 doi: 10.1109/TII.2018.2869843
|
[11] |
Abidine M B, Fergani B, Menhour I. Activity recognition from smartphones using hybrid classifier PCA-SVM-HMM//2019 International Conference on Wireless Networks and Mobile Communications (WINCOM). Fez, 2019: 1
|
[12] |
Mohammad Y, Matsumoto K, Hoashi K. Selecting orientation-insensitive features for activity recognition from accelerometers. IEICE Trans Inf Syst, 2019, E102.D(1): 104 doi: 10.1587/transinf.2018EDP7092
|
[13] |
Sansano E, Montoliu R, Belmonte Fernández ó. A study of deep neural networks for human activity recognition. Comput Intell, 2020, 36(3): 1113 doi: 10.1111/coin.12318
|
[14] |
Abbaspour S, Fotouhi F, Sedaghatbaf A, et al. A comparative analysis of hybrid deep learning models for human activity recognition. Sensors, 2020, 20(19): 5707 doi: 10.3390/s20195707
|
[15] |
Zou Q, Wang Y L, Wang Q, et al. Deep learning-based gait recognition using smartphones in the wild. IEEE Trans Inf Forensics Secur, 2020, 15: 3197 doi: 10.1109/TIFS.2020.2985628
|
[16] |
Zhu Q C, Chen Z H, Soh Y C. A novel semisupervised deep learning method for human activity recognition. IEEE Trans Ind Inform, 2019, 15(7): 3821 doi: 10.1109/TII.2018.2889315
|
[17] |
Wang D H, Li M. Stochastic configuration networks: Fundamentals and algorithms. IEEE Trans Cybern, 2017, 47(10): 3466 doi: 10.1109/TCYB.2017.2734043
|
[18] |
Dai W, Li D P, Chen Q X, et al. Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique. J Central South Univ, 2019, 26(1): 43 doi: 10.1007/s11771-019-3981-2
|
[19] |
Sheng Z Y, Zeng Z Q, Qu H Q, et al. Optical fiber intrusion signal recognition method based on TSVD-SCN. Opt Fiber Technol, 2019, 48: 270 doi: 10.1016/j.yofte.2019.01.023
|
[20] |
Ren Y, Zhang L, Suganthan P N. Ensemble classification and regression-recent developments, applications and future directions. IEEE Comput Intell Mag, 2016, 11(1): 41 doi: 10.1109/MCI.2015.2471235
|
[21] |
Zhou H T, Chen J, Dong G M, et al. Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model. Mech Syst Signal Process, 2016, 66-67: 568 doi: 10.1016/j.ymssp.2015.04.037
|
[22] |
Qin C, Song S J, Huang G, et al. Unsupervised neighborhood component analysis for clustering. Neurocomputing, 2015, 168: 609 doi: 10.1016/j.neucom.2015.05.064
|
[23] |
Zhao L J, Zou S D, Huang M Z, et al. Distributed regularized stochastic configuration networks via the elastic net. Neural Comput Appl, 2021, 33(8): 3281 doi: 10.1007/s00521-020-05178-x
|
[24] |
Wang W, Wang D H. Prediction of component concentrations in sodium aluminate liquor using stochastic configuration networks. Neural Comput Appl, 2020, 32(17): 13625 doi: 10.1007/s00521-020-04771-4
|
[25] |
Song B C, Ra J B. A fast search algorithm for vector quantization using L/sub 2/-norm pyramid of codewords. IEEE Trans Image Process, 2002, 11(1): 10 doi: 10.1109/83.977878
|
[26] |
Anguita D, Ghio A, Oneto L, et al. A public domain dataset for human activity recognition using smartphones [DB/OL]. UCI Machine Learning Repository (2013-04)[2021-03-18]. http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
|