Citation: | JIANG Hua-yang, WU Nan, Lü Jia-jie, LIU Jun, YIN Chang-ping, GAO Shi-tao. Research progress on the design principle and preparation of low ice adhesion surface[J]. Chinese Journal of Engineering, 2021, 43(10): 1413-1424. doi: 10.13374/j.issn2095-9389.2021.01.14.008 |
[1] |
Laforte J L, Allaire M A, Laflamme J. State-of-the-art on power line de-icing. Atmos Res, 1998, 46(1-2): 143 doi: 10.1016/S0169-8095(97)00057-4
|
[2] |
Parent O, Ilinca A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg Sci Technol, 2011, 65(1): 88 doi: 10.1016/j.coldregions.2010.01.005
|
[3] |
張惠, 吳敬濤. 極端氣候環境條件下民用飛機典型飛行事故研究. 科技與創新, 2019(15):132
Zhang H, Wu J T. Research on typical flight accidents of civil aircraft under extreme climate conditions. Sci Technol Innov, 2019(15): 132
|
[4] |
Samuelsen E M. Ship-icing prediction methods applied in operational weather forecasting. QJR Meteorol Soc, 2018, 144(710): 13 doi: 10.1002/qj.3174
|
[5] |
謝強, 陳海龍, 章繼峰. 極地航行船舶及海洋平臺防冰和除冰技術研究進展. 中國艦船研究, 2017, 12(1):45 doi: 10.3969/j.issn.1673-3185.2017.01.008
Xie Q, Chen H L, Zhang J F. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms. Chin J Ship Res, 2017, 12(1): 45 doi: 10.3969/j.issn.1673-3185.2017.01.008
|
[6] |
Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind turbine performance. Renew Sustain Energy Rev, 2009, 13(2): 428 doi: 10.1016/j.rser.2007.11.009
|
[7] |
Fillion R M, Riahi A R, Edrisy A. A review of icing prevention in photovoltaic devices by surface engineering. Renew Sustain Energy Rev, 2014, 32: 797 doi: 10.1016/j.rser.2014.01.015
|
[8] |
Chen J, Luo Z Q, Fan Q R, et al. Anti-ice coating inspired by ice skating. Small, 2014, 10(22): 4693 doi: 10.1002/smll.201401557
|
[9] |
Kreder M J, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: smooth, textured or slippery? Nat Rev Mater, 2016, 1: 15003
|
[10] |
Eberle P, Tiwari M K, Maitra T, et al. Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale, 2014, 6(9): 4874 doi: 10.1039/C3NR06644D
|
[11] |
Guo P, Zheng Y M, Wen M X, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv Mater, 2012, 24(19): 2642 doi: 10.1002/adma.201104412
|
[12] |
Mishchenko L, Hatton B, Bahadur V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano, 2010, 4(12): 7699 doi: 10.1021/nn102557p
|
[13] |
He Z W, Xiao S B, Gao H J, et al. Multiscale crack initiator promoted super-low ice adhesion surfaces. Soft Matter, 2017, 13(37): 6562 doi: 10.1039/C7SM01511A
|
[14] |
R?nneberg S, He J Y, Zhang Z L. The need for standards in low ice adhesion surface research: a critical review. J Adhesion Sci Technol, 2020, 34(3): 319 doi: 10.1080/01694243.2019.1679523
|
[15] |
Fortin G, Perron J. Ice adhesion models to predict shear stress at shedding. J Adhesion Sci Technol, 2012, 26(4-5): 523 doi: 10.1163/016942411X574835
|
[16] |
Ryzhkin I A, Petrenko V F. Physical mechanisms responsible for ice adhesion. J Phys Chem B, 1997, 101(32): 6267 doi: 10.1021/jp9632145
|
[17] |
Petrenko V F, Peng S. Reduction of ice adhesion to metal by using self-assembling monolayers (SAMs). Can J Phys, 2003, 81(1-2): 387 doi: 10.1139/p03-014
|
[18] |
van der Leeden M C, Frens G. Surface properties of plastic materials in relation to their adhering performance. Adv Eng Mater, 2002, 4(5): 280 doi: 10.1002/1527-2648(20020503)4:5<280::AID-ADEM280>3.0.CO;2-Z
|
[19] |
Kulinich S A, Farzaneh M. Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers. Surf Sci, 2004, 573(3): 379 doi: 10.1016/j.susc.2004.10.008
|
[20] |
Somlo B, Gupta V. A hydrophobic self-assembled monolayer with improved adhesion to aluminum for deicing application. Mech Mater, 2001, 33(8): 471 doi: 10.1016/S0167-6636(01)00068-0
|
[21] |
Kulinich S A, Honda M, Zhu A L, et al. The icephobic performance of alkyl-grafted aluminum surfaces. Soft Matter, 2015, 11(5): 856 doi: 10.1039/C4SM02204A
|
[22] |
Jafari R, Menini R, Farzaneh M. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings. Appl Surf Sci, 2010, 257(5): 1540 doi: 10.1016/j.apsusc.2010.08.092
|
[23] |
Martin T P, Lau K K S, Chan K, et al. Initiated chemical vapor deposition (iCVD) of polymeric nanocoatings. Surf Coat Technol, 2007, 201(22-23): 9400 doi: 10.1016/j.surfcoat.2007.05.003
|
[24] |
Sojoudi H, McKinley G H, Gleason K K. Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion. Mater Horiz, 2015, 2(1): 91 doi: 10.1039/C4MH00162A
|
[25] |
Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477(7365): 443 doi: 10.1038/nature10447
|
[26] |
Petrenko V F. Study of the surface of ice, ice/solid and ice/liquid interfaces with scanning force microscopy. J Phys Chem B, 1997, 101(32): 6276 doi: 10.1021/jp963217h
|
[27] |
Smith J D, Gounden C, Yague J. Methods and Articles for Liquid-impregnated Surfaces for the Inhibition of Vapor or Gas Nucleation: US Patent, US2014/0314991A1. 2014-10-23
|
[28] |
Vogel N, Belisle R A, Hatton B, et al. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat Commun, 2013, 4: 2176 doi: 10.1038/ncomms3176
|
[29] |
Kim P, Wong T S, Alvarenga J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano, 2012, 6(8): 6569 doi: 10.1021/nn302310q
|
[30] |
Zhang J L, Gu C D, Tu J P. Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg alloy protection. ACS Appl Mater Interfaces, 2017, 9(12): 11247 doi: 10.1021/acsami.7b00972
|
[31] |
Tao C, Li X H, Liu B, et al. Highly icephobic properties on slippery surfaces formed from polysiloxane and fluorinated POSS. Prog Org Coat, 2017, 103: 48 doi: 10.1016/j.porgcoat.2016.11.018
|
[32] |
Wang Y L, Yao X, Chen J, et al. Organogel as durable anti-icing coatings. Sci China Mater, 2015, 58(7): 559 doi: 10.1007/s40843-015-0069-7
|
[33] |
Sett S, Yan X, Barac G, et al. Lubricant-infused surfaces for low-surface-tension fluids: promise versus reality. ACS Appl Mater Interfaces, 2017, 9(41): 36400 doi: 10.1021/acsami.7b10756
|
[34] |
Chen J, Dou R M, Cui D P, et al. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl Mater Interfaces, 2013, 5(10): 4026 doi: 10.1021/am401004t
|
[35] |
Dou R M, Chen J, Zhang Y F, et al. Anti-icing coating with an aqueous lubricating layer. ACS Appl Mater Interfaces, 2014, 6(10): 6998 doi: 10.1021/am501252u
|
[36] |
Wang F, Xiao S B, Zhuo Y Z, et al. Liquid layer generators for excellent icephobicity at extremely low temperatures. Mater Horiz, 2019, 6(10): 2063 doi: 10.1039/C9MH00859D
|
[37] |
He Z Y, Wu C Y, Hua M T, et al. Bioinspired multifunctional anti-icing hydrogel. Matter, 2020, 2(3): 723 doi: 10.1016/j.matt.2019.12.017
|
[38] |
Li T, Ibá?ez-Ibá?ez P F, H?konsen V, et al. Self-deicing electrolyte hydrogel surfaces with Pa-level ice adhesion and durable antifreezing/antifrost performance. ACS Appl Mater Interfaces, 2020, 12: 35572 doi: 10.1021/acsami.0c06912
|
[39] |
Yao X, Liu J J, Yang C H, et al. Hydrogel paint. Adv Mater, 2019, 31(39): 1903062 doi: 10.1002/adma.201903062
|
[40] |
Chaudhury M K, Kim K H. Shear-induced adhesive failure of a rigid slab in contact with a thin confined film. Eur Phys J E Soft Matter, 2007, 23(2): 175 doi: 10.1140/epje/i2007-10171-x
|
[41] |
Golovin K, Kobaku S P R, Lee D H, et al. Designing durable icephobic surfaces. Sci Adv, 2016, 2(3): e1501496 doi: 10.1126/sciadv.1501496
|
[42] |
Beemer D L, Wang W, Kota A K. Durable gels with ultra-low adhesion to ice. J Mater Chem A, 2016, 4(47): 18253 doi: 10.1039/C6TA07262C
|
[43] |
Zhuo Y Z, Li T, Wang F, et al. An ultra-durable icephobic coating by a molecular pulley. Soft Matter, 2019, 15(17): 3607 doi: 10.1039/C9SM00162J
|
[44] |
Li C H, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem, 2016, 8(6): 618 doi: 10.1038/nchem.2492
|
[45] |
Zhuo Y Z, H?konsen V, He Z W, et al. Enhancing the mechanical durability of icephobic surfaces by introducing autonomous self-healing function. ACS Appl Mater Interfaces, 2018, 10(14): 11972 doi: 10.1021/acsami.8b01866
|
[46] |
Zhuo Y Z, Xiao S B, H?konsen V, et al. Ultrafast self-healing and highly transparent coating with mechanically durable icephobicity. Appl Mater Today, 2020, 19: 100542 doi: 10.1016/j.apmt.2019.100542
|
[47] |
Golovin K, Dhyani A, Thouless M D, et al. Low-interfacial toughness materials for effective large-scale deicing. Science, 2019, 364(6438): 371 doi: 10.1126/science.aav1266
|
[48] |
Nosonovsky M, Hejazi V. Why superhydrophobic surfaces are not always icephobic. ACS Nano, 2012, 6(10): 8488 doi: 10.1021/nn302138r
|
[49] |
He Z W, Zhuo Y Z, He J Y, et al. Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion. Soft Matter, 2018, 14(23): 4846 doi: 10.1039/C8SM00820E
|
[50] |
He Z W, Zhuo Y Z, Wang F, et al. Understanding the role of hollow sub-surface structures in reducing ice adhesion strength. Soft Matter, 2019, 15(13): 2905 doi: 10.1039/C9SM00024K
|
[51] |
Irajizad P, Al-Bayati A, Eslami B, et al. Stress-localized durable icephobic surfaces. Mater Horiz, 2019, 6(4): 758 doi: 10.1039/C8MH01291A
|
[52] |
Wang N, Xiong D S, Deng Y L, et al. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties. ACS Appl Mater Interfaces, 2015, 7(11): 6260 doi: 10.1021/acsami.5b00558
|
[53] |
Ahmadi S F, Nath S, Iliff G J, et al. Passive antifrosting surfaces using microscopic ice patterns. ACS Appl Mater Interfaces, 2018, 10(38): 32874 doi: 10.1021/acsami.8b11285
|
[54] |
Ahn J, Jeon J, Heu C S, et al. Three-dimensionally programmed slippery wrinkles with high stretchability for tunable functionality of icephobicity and effective water harvesting. Adv Mater Interfaces, 2018, 5(21): 1800980 doi: 10.1002/admi.201800980
|
[55] |
Varanasi K K, Deng T, David Smith J, et al. Frost formation and ice adhesion on superhydrophobic surfaces. Appl Phys Lett, 2010, 97(23): 234102 doi: 10.1063/1.3524513
|
[56] |
Xiao S, Skallerud B H, Wang F, et al. Enabling sequential rupture for lowering atomistic ice adhesion. Nanoscale, 2019, 11(35): 16262 doi: 10.1039/C9NR00104B
|
[57] |
Jamil M, Ali A, Haq F, et al. Icephobic strategies and materials with superwettability: Design principles and mechanism. Langmuir, 2018, 34(50): 15425 doi: 10.1021/acs.langmuir.8b03276
|
[58] |
Makkonen L. Ice adhesion—theory, measurements and countermeasures. J Adhesion Sci Technol, 2012, 26(4-5): 413 doi: 10.1163/016942411X574583
|
[59] |
Løset S, Shkhinek K N, Gudmestad O T, et al. Actions from Ice on Arctic Offshore and Coastal Structures. St Petersburg: LAN, 2006
|
[60] |
Wang C Y, Gupta M C, Yeong Y H, et al. Factors affecting the adhesion of ice to polymer substrates. J Appl Polym Sci, 2018, 135(24): 45734 doi: 10.1002/app.45734
|
[61] |
Irajizad P, Nazifi S, Ghasemi H. Icephobic surfaces: Definition and figures of merit. Adv Colloid Interface Sci, 2019, 269: 203 doi: 10.1016/j.cis.2019.04.005
|
[62] |
Wang C Y, Zhang W, Siva A, et al. Laboratory test for ice adhesion strength using commercial instrumentation. Langmuir, 2014, 30(2): 540 doi: 10.1021/la4044254
|
[63] |
Work A, Lian Y S. A critical review of the measurement of ice adhesion to solid substrates. Prog Aerosp Sci, 2018, 98: 1 doi: 10.1016/j.paerosci.2018.03.001
|
[64] |
R?nneberg S, Laforte C, Volat C, et al. The effect of ice type on ice adhesion. AIP Adv, 2019, 9(5): 055304 doi: 10.1063/1.5086242
|
[65] |
Chen Y, Wang W H, Dong W, et al. Numerical study on the adhesion strength between ice and aluminium based on a cohesive zone model // Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf, 2014
|