Citation: | LI Qing, HU Wei-yang, LI Jiang-yun, LIU Yan, LI Meng-xuan. A survey of person re-identification based on deep learning[J]. Chinese Journal of Engineering, 2022, 44(5): 920-932. doi: 10.13374/j.issn2095-9389.2020.12.22.004 |
[1] |
Ye M, Shen J B, Lin G J, et al. Deep learning for person re-identification: a survey and outlook [J/OL]. Arxiv Perprint (2020-01-13) [2020-12-22]. https://arxiv.org/abs/2001.04193
|
[2] |
Karanam S, Gou M R, Wu Z Y, et al. A systematic evaluation and benchmark for person re-identification: Features, metrics, and datasets. IEEE Trans Pattern Anal Mach Intell, 2019, 41(3): 523 doi: 10.1109/TPAMI.2018.2807450
|
[3] |
Li W, Zhao R, Xiao T, et al. DeepReID: Deep filter pairing neural network for person re-identification // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, 2014: 152
|
[4] |
Zheng L, Shen L, Tian L, et al. Scalable person re-identification: a Benchmark // 2015 IEEE International Conference on Computer Vision. Santiago, 2015: 1116
|
[5] |
Zheng Z D, Zheng L, Yang Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro // 2017 IEEE International Conference on Computer Vision (ICCV). Venice, 2017: 3774
|
[6] |
Zhong Z, Zheng L, Cao D L, et al. Re-ranking person re-identification with k-reciprocal encoding // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 3652
|
[7] |
Hirzer M, Beleznai C, Roth P M, et al. Person re-identification by descriptive and discriminative classification // Scandinavian Conference on Image Analysis. Ystad Sal, 2011: 91
|
[8] |
Wang T Q, Gong S G, Zhu X T, et al. Person re-identification by discriminative selection in video ranking. IEEE Trans Pattern Anal Mach Intell, 2016, 38(12): 2501 doi: 10.1109/TPAMI.2016.2522418
|
[9] |
Wei L H, Zhang S L, Gao W, et al. Person transfer GAN to bridge domain gap for person re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 79
|
[10] |
Song G L, Leng B, Liu Y, et al. Region-based quality estimation network for large-scale person re-identification [J/OL]. Arxiv Perprint (2017-11-23) [2020-12-22]. https://arxiv.org/abs/1711.08766
|
[11] |
Yu S J, Li S H, Chen D P, et al. COCAS: A large-scale clothes changing person dataset for Re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 3397
|
[12] |
Wang G R, Wang G C, Zhang X J, et al. Weakly supervised person Re-ID: Differentiable graphical learning and a new benchmark [J/OL]. arXiv preprint arXiv (2019-04-08) [2020-12-22]. https://arxiv.org/abs/1904.03845
|
[13] |
Wang Y N, Liao S C, Shao L. Surpassing real-world source training data: Random 3D characters for generalizable person re-identification // Proceedings of the 28th ACM International Conference on Multimedia. Seattle, 2020: 3422
|
[14] |
Xu B Q, He L X, Liao X Y, et al. Black Re-ID: A Head-shoulder descriptor for the challenging problem of person re-identification // Proceedings of the 28th ACM International Conference on Multimedia. Seattle, 2020: 673
|
[15] |
Wu Y, Lin Y T, Dong X Y, et al. Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 5177
|
[16] |
Zheng L, Bie Z, Sun Y, et al. Mars: A video benchmark for large-scale person re-identification // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 868
|
[17] |
Basaran E, Tesfaye Y T, Shah M. EgoReID Dataset: Person re-identification in videos acquired by mobile devices with first-person point-of-view [J/OL]. arXiv preprint arXiv (2018-12-22) [2020-12-22].https://arxiv.org/abs/1812.09570
|
[18] |
Li J, Wang J, Tian Q, et al. Global-local temporal representations for video person re-identification // Proceedings of the IEEE International Conference on Computer Vision. Seoul, 2019: 3958
|
[19] |
Ge Y X, Li Z W, Zhao H Y, et al. FD-GAN: Pose-guided feature distilling GAN for robust person re-identification. [J/OL]. arXiv preprint arXiv (2018-10-06) [2021-5-5]. https://arxiv.org/abs/1810.02936
|
[20] |
Wang G C, Lai J H, Huang P G, et al. Spatial-temporal person re-identification // Proceedings of the AAAI conference on artificial intelligence. Hawaii, 2019, 33(1): 8933
|
[21] |
Zhu Z H, Jiang X Y, Zheng F, et al. Viewpoint-aware loss with angular regularization for person re-identification [J/OL]. arXiv preprint arXiv (2019-12-03) [2020-12-22]. https://arxiv.org/abs/1912.01300v1
|
[22] |
Zheng Z D, Yang X D, Yu Z D, et al. Joint discriminative and generative learning for person Re-identification // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, 2019: 2133
|
[23] |
Chen T L, Ding S J, Xie J Y, et al. ABD-net: Attentive but diverse person Re-identification // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 8350
|
[24] |
Zhou K Y, Yang Y X, Cavallaro A, et al. Omni-scale feature learning for person re-identification // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2019: 3701
|
[25] |
Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 1
|
[26] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770
|
[27] |
Huang G, Liu Z, Der Maaten L V, et al. Densely connected convolutional networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 2261
|
[28] |
Filkovi? I, Kalafati? Z, Hrka? T. Deep metric learning for person re-identification and de-identification // 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics. Opatija, 2016: 1360
|
[29] |
Yi D, Lei Z, Liao S C, et al. Deep metric learning for person Re-identification // 2014 22nd International Conference on Pattern Recognition. Stockholm, 2014: 34
|
[30] |
Ahmed E, Jones M, Marks T K. An improved deep learning architecture for person re-identification // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 3908
|
[31] |
Wu L, Shen C H, Hengel A V D. PersonNet: Person re-identification with deep convolutional neural networks [J/OL]. Arxiv Perprint (2016-01-27) [2020-12-22]. https://arxiv.org/abs/1601.07255
|
[32] |
Wang Y C, Chen Z Z, Wu F, et al. Person re-identification with cascaded pairwise convolutions // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 1470
|
[33] |
Wang F Q, Zuo W M, Lin L, et al. Joint learning of single-image and cross-image representations for person re-identification // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 1288
|
[34] |
熊煒, 熊子婕, 楊荻椿, 等. 基于深層特征融合的行人重識別方法. 計算機工程與科學, 2020, 42(2):358 doi: 10.3969/j.issn.1007-130X.2020.02.022
Xiong W, Xiong Z J, Yang D C, et al. Pedestrian re-identification based on deep feature fusion. Comput Eng Sci, 2020, 42(2): 358 doi: 10.3969/j.issn.1007-130X.2020.02.022
|
[35] |
熊煒, 楊荻椿, 熊子婕, 等. 基于全局特征拼接的行人重識別算法研究. 計算機應用研究, 2021, 38(1):316
Xiong W, Yang D C, Xiong Z J, et al. Person re-identification algorithm based on global feature stitching. Appl Res Comput, 2021, 38(1): 316
|
[36] |
Chen W, Chen X, Zhang J, et al. A Multi-task deep network for person re-identification // Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco, 2017: 3988
|
[37] |
Chen H R, Wang Y W, Shi Y M, et al. Deep transfer learning for person Re-identification // 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). Xi'an, 2018: 1
|
[38] |
Ding S Y, Lin L, Wang G R, et al. Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit, 2015, 48(10): 2993 doi: 10.1016/j.patcog.2015.04.005
|
[39] |
Shi H L, Yang Y, Zhu X Y, et al. Embedding deep metric for person re-identification: A study against large variations // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 732
|
[40] |
Su C, Zhang S L, Xing J L, et al. Deep attributes driven multi-camera person re-identification // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 475
|
[41] |
Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 815
|
[42] |
Hermans A, Beyer L, Leibe B, et al. In defense of the triplet loss for person re-identification [J/OL]. Arxiv Perprint (2017-03-22) [2020-12-22].https://arxiv.org/abs/1703.07737
|
[43] |
Cheng D, Gong Y H, Zhou S P, et al. Person re-identification by multi-channel parts-based CNN with improved triplet loss function // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 1335
|
[44] |
Chen W H, Chen X T, Zhang J G, et al. Beyond triplet loss: A deep quadruplet network for person Re-identification // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 1320
|
[45] |
Luo H, Gu Y Z, Liao X Y, et al. Bag of tricks and a strong baseline for deep person Re-identification // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, 2019: 1487
|
[46] |
Sun Y F, Zheng L, Yang Y, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline) // Proceedings of the European Conference on Computer Vision. Munich, 2018: 501
|
[47] |
Li D W, Chen X T, Zhang Z, et al. Learning deep context-aware features over body and latent parts for person Re-identification // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 7398
|
[48] |
Kalayeh M M, Basaran E, G?kmen M, et al. Human semantic parsing for person Re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 1062
|
[49] |
徐龍壯, 彭力, 朱鳳增. 多任務金字塔重疊匹配的行人重識別方法. 計算機工程, 2021, 47(1):239
Xu L Z, Peng L, Zhu F Z. Pedestrian re-identification method based on multi-task pyramid overlapping matching. Comput Eng, 2021, 47(1): 239
|
[50] |
Zhu K, Guo H Y, Liu Z W, et al. Identity-guided human semantic parsing for person re-identification [J/OL]. ArXiv Preprint (2020-07-27) [2020-12-22].https://arxiv.org/abs/2007.13467
|
[51] |
Zhao L M, Li X, Zhuang Y T, et al. Deeply-learned part-aligned representations for person re-identification // 2017 IEEE International Conference on Computer Vision (ICCV). Venice, 2017: 3239
|
[52] |
董亞超, 劉宏哲, 徐成. 基于顯著性多尺度特征協作融合的行人重識別方法[J/OL]. 計算機工程, https://doi.org/10.19678/j.issn.1000-3428.0057938
Dong Y C, Liu H Z, Xu C. Person re-identification method based on saliency multi-scale feature collaborative fusion [J/OL]. Computr Engineering, https://doi.org/10.19678/j.issn.1000-3428.0057938
|
[53] |
Wang G A, Yang S, Liu H Y, et al. High-order information matters: Learning relation and topology for occluded person Re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 6448
|
[54] |
Yang W X, Yan Y, Chen S. Adaptive deep metric embeddings for person re-identification under occlusions. Neurocomputing, 2019, 340: 125 doi: 10.1016/j.neucom.2019.02.042
|
[55] |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735
|
[56] |
Varior R R, Haloi M, Wang G, et al. Gated Siamese convolutional neural network architecture for human re-identification // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 791
|
[57] |
楊婉香, 嚴嚴, 陳思, 等. 基于多尺度生成對抗網絡的遮擋行人重識別方法. 軟件學報, 2020, 31(7):1943
Yang W X, Yan Y, Chen S, et al. Multi-scale generative adversarial network for person Re-identification under occlusion. J Softw, 2020, 31(7): 1943
|
[58] |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets // Conference and Workshop on Neural Information Processing Systems. Montreal, 2014: 2672
|
[59] |
Radford A, Metz L, Chintala S, et al. Unsupervised representation learning with deep convolutional generative adversarial networks [J/OL]. Arxiv Preprint (2015-11-19) [2020-12-22]. https//arxiv. org/abs/1511.06434
|
[60] |
Zhong Z, Zheng L, Zheng Z D, et al. Camera style adaptation for person Re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 5157
|
[61] |
Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks // 2017 IEEE International Conference on Computer Vision (ICCV). Venice, 2017: 2242
|
[62] |
Deng W J, Zheng L, Ye Q X, et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person Re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 994
|
[63] |
Li Y T, Xue R N, Zhu M M, et al. ReadNet: Towards accurate ReID with limited and noisy samples [J/OL]. ArXiv Preprint (2020-05-12) [2020-12-22].https://arxiv.org/abs/2005.05740
|
[64] |
Zhai Y P, Lu S J, Ye Q X, et al. AD-cluster: Augmented discriminative clustering for domain adaptive person re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 9018
|
[65] |
張曉偉, 呂明強, 李慧. 基于局部語義特征不變性的跨域行人重識別. 北京航空航天大學學報, 2020, 46(9):1682
Zhang X W, Lü M Q, Li H. Cross-domain person re-identification based on partial semantic feature invariance. J Beijing Univ Aeronaut Astronaut, 2020, 46(9): 1682
|
[66] |
Liu C, Chang X J, Shen Y D. Unity style transfer for person Re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 6886
|
[67] |
Qian X L, Fu Y W, Xiang T, et al. Pose-normalized image generation for person re-identification // Proceedings of the European Conference on Computer Vision. Munich, 2018: 661
|
[68] |
Liu J X, Ni B B, Yan Y C, et al. Pose transferrable person re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 4099
|
[69] |
Cao Z, Simon T, Wei S H, et al. Realtime multi-person 2D pose estimation using part affinity fields // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 1302
|
[70] |
Mirza M, Osindero S. Conditional generative adversarial nets [J/OL]. ArXiv Preprint (2014-11-06) [2020-12-22]. https://arxiv.org/abs/1411.1784
|
[71] |
Farenzena M, Bazzani L, Perina A, et al. Person re-identification by symmetry-driven accumulation of local features // 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, 2010: 2360
|
[72] |
Kviatkovsky I, Adam A, Rivlin E. Color invariants for person re-identification. IEEE Trans Pattern Anal Mach Intell, 2013, 35(7): 1622 doi: 10.1109/TPAMI.2012.246
|
[73] |
Ma B P, Su Y, Jurie F. Local descriptors encoded by fisher vectors for person re-identification // International Conference on Computer Vision. Barcalona, 2012: 413
|
[74] |
Chen D P, Yuan Z J, Chen B D, et al. Similarity learning with spatial constraints for person re-identification // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 1268
|
[75] |
K?stinger M, Hirzer M, Wohlhart P, et al. Large scale metric learning from equivalence constraints // 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, 2012: 2288
|
[76] |
Zaremba W, Sutskever I, Vinyals O, et al. Recurrent neural network regularization [J/OL]. Arxiv Preprint (2014-09-08) [2020-12-22].https://arxiv.org/abs/1409.2329
|
[77] |
McLaughlin N, Rincon J M, Miller P. Recurrent convolutional network for video-based person Re-identification // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 1325
|
[78] |
Wu L, Shen C H, Den Hengel A, et al. Deep recurrent convolutional networks for video-based person re-identification: An end-to-end approach [J/OL]. ArXiv Preprint (2014-06-11) [2020-12-22].https://arxiv.org/abs/1606.01609v2
|
[79] |
Cho K, Van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [J/OL]. ArXiv Preprint (2014-06-03) [2020-12-22]. https://arxiv.org/abs/1406.1078
|
[80] |
Yan Y C, Ni B B, Song Z C, et al. Person re-identification via recurrent feature aggregation // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 701
|
[81] |
Zhang R M, Li J Y, Sun H B, et al. SCAN: Self-and-collaborative attention network for video person re-identification. IEEE Trans Image Process, 2019, 28(10): 4870 doi: 10.1109/TIP.2019.2911488
|
[82] |
Liao X Y, He L X, Yang Z W, et al. Video-based person re-identification via 3D convolutional networks and non-local attention // Asian Conference on Computer Vision. Perth, 2018: 620
|
[83] |
Li S, Bak S, Carr P, et al. Diversity regularized spatiotemporal attention for video-based person re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 369
|
[84] |
Gu X Q, Chang H, Ma B P, et al. Appearance-preserving 3D convolution for video-based person re-identification // Proceedings of the European Conference on Computer Vision. Glasgow, 2020: 228
|
[85] |
Feng Y, Wang Y, Luo J B, et al. Video-based person re-identification using gated convolutional recurrent neural networks [J/OL]. ArXiv Preprint (2020-03-21) [2020-12-22]. https://arxiv.org/abs/2003.09717
|
[86] |
Hou R B, Ma B P, Chang H, et al. VRSTC: Occlusion-free video person Re-identification // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, 2019: 7176
|
[87] |
Gao S, Wang J Y, Lu H C, et al. Pose-guided visible part matching for occluded person ReID // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 11741
|
[88] |
Yan Y C, Qin J, Chen J X, et al. Learning multi-granular hypergraphs for video-based person re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 2896
|
[89] |
Zhang Z Z, Lan C L, Zeng W J, et al. Multi-granularity reference-aided attentive feature aggregation for video-based person Re-identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 10404
|
[90] |
Liu J, Zha Z, Zhu X, et al. Co-saliency spatio-temporal interaction network for person re-identification in videos [J/OL]. ArXiv Preprint (2020-05-11) [2020-12-22]. https://arxiv.org/abs/2004.04979
|
[91] |
Shen X, Lin Z, Brandt J, et al. Object retrieval and localization with spatially-constrained similarity measure and k-nn re-ranking // 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, 2012: 3013
|
[92] |
Li W, Wu Y, Mukunoki M, et al. Common-near-neighbor analysis for person re-identification // 2012 19th IEEE International Conference on Image Processing. Orlando, , 2012: 1621
|
[93] |
Ye M, Chen J, Leng Q M, et al. Coupled-view based ranking optimization for person re-identification // International Conference on Multimedia Modeling. Kaiserslautern, 2015: 105
|
[94] |
Wang H X, Gong S G, Zhu X T, et al. Human-in-the-loop person re-identification // Proceedings of the European Conference on Computer Vision. Amsterdam, 2016: 405
|
[95] |
Sarfraz M S, Schumann A, Eberle A, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood Re-ranking // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 420
|