Citation: | LI Rui-feng, LI Wen-hai, SUN Yan-li, WU Yang-yong. Resampling algorithm for imbalanced data based on their neighbor relationship[J]. Chinese Journal of Engineering, 2021, 43(6): 862-869. doi: 10.13374/j.issn2095-9389.2020.04.05.002 |
[1] |
Chen S, He H B, Garcia E A. RAMOBoost: Ranked minority oversampling in boosting. IEEE Trans Neural Networks, 2010, 21(10): 1624 doi: 10.1109/TNN.2010.2066988
|
[2] |
Xiao Y C, Wang H G, Zhang L, et al. Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection. Knowledge-Based Syst, 2014, 59: 75 doi: 10.1016/j.knosys.2014.01.020
|
[3] |
Miao Z M, Zhao L W, Yuan W W, et al. Multi-class imbalanced learning implemented in network intrusion detection // 2011 International Conference on Computer Science and Service System (CSSS). Nanjing, 2011: 1395
|
[4] |
Smailovi? J, Gr?ar M, Lavra? N, et al. Stream-based active learning for sentiment analysis in the financial domain. Inform Sci, 2014, 285: 181 doi: 10.1016/j.ins.2014.04.034
|
[5] |
Liu Y Q, Wang C, Zhang L. Decision tree based predictive models for breast cancer survivability on imbalanced data // 2009 3rd International Conference on Bioinformatics and Biomedical Engineering. Beijing, 2009: 1
|
[6] |
高明哲, 許愛強, 許晴. SL-SMOTE和CS-RVM結合的電子設備故障檢測方法. 計算機工程與應用, 2019, 55(4):185 doi: 10.3778/j.issn.1002-8331.1708-0032
Gao M Z, Xu A Q, Xu Q. Fault detection method of electronic equipment based on SL-SMOTE and CS-RVM. Comput Eng Appl, 2019, 55(4): 185 doi: 10.3778/j.issn.1002-8331.1708-0032
|
[7] |
馮宏偉, 姚博, 高原, 等. 基于邊界混合采樣的非均衡數據處理算法. 控制與決策, 2017, 32(10):1831
Feng H W, Yao B, Gao Y, et al. Imbalanced data processing algorithm based on boundary mixed sampling. Control Decis, 2017, 32(10): 1831
|
[8] |
Gao M, Hong X, Chen S, et al. A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems. Neurocomputing, 2011, 74(17): 3456 doi: 10.1016/j.neucom.2011.06.010
|
[9] |
古平, 歐陽源遊. 基于混合采樣的非平衡數據集分類研究. 計算機應用研究, 2015, 32(2):379 doi: 10.3969/j.issn.1001-3695.2015.02.014
Gu P, Ouyang Y Y. Classification research for unbalanced data based on mixed-sampling. Appl Res Comput, 2015, 32(2): 379 doi: 10.3969/j.issn.1001-3695.2015.02.014
|
[10] |
Yu H L, Yang X B, Zheng S, et al. Active learning from imbalanced data: A solution of online weighted extreme learning machine. IEEE Trans Neural Networks Learn Syst, 2019, 30(4): 1088 doi: 10.1109/TNNLS.2018.2855446
|
[11] |
蔡艷艷, 宋曉東. 針對非平衡數據分類的新型模糊SVM模型. 西安電子科技大學學報(自然科學版), 2015, 42(5):120
Cai Y Y, Song X D. New fuzzy SVM model used in imbalanced datasets. J Xidian Univ Nat Sci, 2015, 42(5): 120
|
[12] |
王春玉, 蘇宏業, 渠瑜, 等. 一種基于過抽樣技術的非平衡數據集分類方法. 計算機工程與應用, 2011, 47(1):139 doi: 10.3778/j.issn.1002-8331.2011.01.038
Wang C Y, Su H Y, Qu Y, et al. Imbalanced data sets classification method based on over-sampling technique. Comput Eng Appl, 2011, 47(1): 139 doi: 10.3778/j.issn.1002-8331.2011.01.038
|
[13] |
張銀峰, 郭華平, 職為梅, 等. 一種面向不平衡數據分類的組合剪枝方法. 計算機工程, 2014, 40(6):157 doi: 10.3969/j.issn.1000-3428.2014.06.034
Zhang Y F, Guo H P, Zhi W M, et al. An ensemble pruning method for imbalanced data classification. Comput Eng, 2014, 40(6): 157 doi: 10.3969/j.issn.1000-3428.2014.06.034
|
[14] |
Vong C M, Ip W F, Wong P K, et al. Predicting minority class for suspended particulate matters level by extreme learning machine. Neurocomputing, 2014, 128: 136 doi: 10.1016/j.neucom.2012.11.056
|
[15] |
翟云, 楊炳儒, 王樹鵬, 等. 基于協同進化機制的欠采樣方法. 北京科技大學學報, 2011, 33(12):1550
Zhai Y, Yang B R, Wang S P, et al. Under-sampling method based on cooperative co-evolutionary mechanism. J Univ Sci Technol Beijing, 2011, 33(12): 1550
|
[16] |
Yang Y, Liu F, Jin Z Y, et al. Aliasing artefact suppression in compressed sensing MRI for random phase-encode undersampling. IEEE Trans Bio-Med Eng, 2015, 62(9): 2215 doi: 10.1109/TBME.2015.2419372
|
[17] |
Jia C Z, Zuo Y. S-SulfPred: A sensitive predictor to capture S-sulfenylation sites based on a resampling one-sided selection undersampling-synthetic minority oversampling technique. J Theoret Biol, 2017, 422: 84 doi: 10.1016/j.jtbi.2017.03.031
|
[18] |
Wilson D L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern, 2007, SMC-2(3): 408
|
[19] |
趙自翔, 王廣亮, 李曉東. 基于支持向量機的不平衡數據分類的改進欠采樣方法. 中山大學學報(自然科學版), 2012, 51(6):10
Zhao Z X, Wang G L, Li X D. An improved SVM based under-sampling method for classifying imbalanced data. Acta Sci Nat Univ Sunyatseni, 2012, 51(6): 10
|
[20] |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority over-sampling technique. J Artif Intell Res, 2002, 16: 321 doi: 10.1613/jair.953
|
[21] |
劉余霞, 劉三民, 劉濤, 等. 一種新的過采樣算法DB_SMOTE. 計算機工程與應用, 2014, 50(6):92 doi: 10.3778/j.issn.1002-8331.1308-0099
Liu Y X, Liu S M, Liu T, et al. New oversampling algorithm DB_SMOTE. Comput Eng Appl, 2014, 50(6): 92 doi: 10.3778/j.issn.1002-8331.1308-0099
|
[22] |
谷瓊, 袁磊, 寧彬, 等. 一種基于混合重取樣策略的非均衡數據集分類算法. 計算機工程與科學, 2012, 34(10):128 doi: 10.3969/j.issn.1007-130X.2012.09.024
Gu Q, Yuan L, Ning B, et al. A novel classification algorithm for imbalanced datasets based on hybrid resampling strategy. Comput Eng Sci, 2012, 34(10): 128 doi: 10.3969/j.issn.1007-130X.2012.09.024
|
[23] |
陶新民, 郝思媛, 張冬雪, 等. 基于樣本特性欠取樣的不均衡支持向量機. 控制與決策, 2013, 28(7):978
Tao X M, Hao S Y, Zhang D X, et al. Support vector machine for unbalanced data based on sample properties under-sampling approaches. Control Decis, 2013, 28(7): 978
|
[24] |
Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem // Proceedings of Advances in Knowledge Discovery and Data Mining Conference. Bangkok, 2009: 475
|
[25] |
Huang G B, Zhou H M, Ding X J, et al. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern, 2012, 42(2): 513 doi: 10.1109/TSMCB.2011.2168604
|
[26] |
Gautam C, Tiwari A, Leng Q. On the construction of extreme learning machine for online and offline one-class classification-an expanded toolbox. Neurocomputing, 2017, 261: 126 doi: 10.1016/j.neucom.2016.04.070
|
[27] |
朱敏, 劉奇, 劉星, 等. 基于LMK和OC-ELM的航空電子部件故障檢測方法. 系統工程與電子技術, 2020, 42(6):1424 doi: 10.3969/j.issn.1001-506X.2020.06.29
Zhu M, Liu Q, Liu X, et al. Fault detection method for avionics based on LMK and OC-ELM. Syst Eng Electron, 2020, 42(6): 1424 doi: 10.3969/j.issn.1001-506X.2020.06.29
|
[28] |
薛麗香, 邱保志. 基于變異系數的邊界點檢測算法. 模式識別與人工智能, 2009, 22(5):799 doi: 10.3969/j.issn.1003-6059.2009.05.020
Xue L X, Qiu B Z. Boundary points detection algorithm based on coefficient of variation. Pattern Recognit Artif Intell, 2009, 22(5): 799 doi: 10.3969/j.issn.1003-6059.2009.05.020
|
[29] |
張鎮, 段哲民, 龍英. 基于小波包的開關電流電路故障診斷. 工程科學學報, 2017, 39(7):1101
Zhang Z, Duan Z M, Long Y. Fault detection in switched current circuits based on preferred wavelet packet. Chin J Eng, 2017, 39(7): 1101
|