Citation: | MA Zhong-gui, NI Run-yu, YU Kai-hang. Recent advances, key techniques and future challenges of knowledge graph[J]. Chinese Journal of Engineering, 2020, 42(10): 1254-1266. doi: 10.13374/j.issn2095-9389.2020.02.28.001 |
[1] |
Sheth A, Thirunarayan K. Semantics Empowered Web 3.0: Managing Enterprise, Social, Sensor, and Cloud-Based Data and Services for Advanced Applications. Vermont: Morgan & Claypool, 2012
|
[2] |
Singhal A. Official Google Blog: Introducing the Knowledge Graph: things, not strings[J/OL]. Google Inc (2012-05-02)[2020-02-28]. http://googleblog.blogspot.pt/2012/05/introducing-knowledge-graph-things-not.html
|
[3] |
Hoffart J, Suchanek F M, Berberich K, et al. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif Intelligence, 2013, 194: 28 doi: 10.1016/j.artint.2012.06.001
|
[4] |
Auer S, Bizer C, Kobilarov G, et al. DBpedia: a nucleus for a web of open data // Proceedings of the 6th International The Semantic Web and 2nd Asian Conference on Asian Semantic Web Conference. Busan, 2007: 722
|
[5] |
Bollacker K, Evans C, Paritosh P, et al. Freebase: a collaboratively created graph database for structuring human knowledge // Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. Vancouver, 2008: 1247
|
[6] |
Carlson A, Betteridge J, Kisiel B, et al. Toward an architecture for never-ending language learning // Twenty-Fourth AAAI Conference on Artificial Intelligence. Atlanta, 2010: 1306
|
[7] |
Wu W T, Li H S, Wang H X, et al. Probase: A probabilistic taxonomy for text understanding // Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. Scottsdale, 2012: 481
|
[8] |
關于OpenKG. CN[EB/OL]. 中國中文信息學會語言與知識計算專業委員會(2018-06-01)[2020-02-28]. http://wp.openkg.cn/?page_id=77PeakLabs
Peak Labs. About OpenKG. CN[EB/OL]. Professional Committee of Language and Knowledge Computing, Chinese information Processing Society of China(2018-06-01)[2020-02-28]. http://wp.openkg.cn/?page_id=77PeakLabs
|
[9] |
Xu B, Xu Y, Liang J Q, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system // Proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Arras, 2017: 428
|
[10] |
Niu X, Sun X R, Wang H F, et al. Zhishi. me-weaving Chinese linking open data // Proceedings of the 10th International Semantic Web Conference. Bonn, 2011: 205
|
[11] |
劉嶠, 李楊, 段宏, 等. 知識圖譜構建技術綜述. 計算機研究與發展, 2016, 53(3):582
Liu Q, Li Y, Duan H, et al. Knowledge graph construction techniques. J Comput Res Dev, 2016, 53(3): 582
|
[12] |
徐增林, 盛泳潘, 賀麗榮, 等. 知識圖譜技術綜述. 電子科技大學學報, 2016, 45(4):589
Xu Z L, Sheng Y P, He L R, et al. Review on knowledge graph techniques. J Univ Electron Sci Technol China, 2016, 45(4): 589
|
[13] |
漆桂林, 高桓, 吳天星. 知識圖譜研究進展. 情報工程, 2017, 3(1):4
Qi G L, Gao H, Wu T X. The research advances of knowledge graph. Technol Intelligence Eng, 2017, 3(1): 4
|
[14] |
官賽萍, 靳小龍, 賈巖濤, 等. 面向知識圖譜的知識推理研究進展. 軟件學報, 2018, 29(10):2966
Guan S P, Jin X L, Jia Y T, et al. Knowledge reasoning over knowledge graph: A survey. J Software, 2018, 29(10): 2966
|
[15] |
黃恒琪, 于娟, 廖曉, 等. 知識圖譜研究綜述. 計算機系統應用, 2019, 28(6):1
Huang H Q, Yu J, Liao X, et al. Review on knowledge graphs. Comput Syst Appl, 2019, 28(6): 1
|
[16] |
肖仰華. 知識圖譜: 概念與技術. 北京: 電子工業出版社, 2020
Xiao Y H. Knowledge Graph: Concepts and Techniques. Beijing: Publishing House of Electronics Industry, 2020
|
[17] |
王昊奮, 漆桂林, 陳華鈞. 知識圖譜: 方法、實踐與應用. 北京: 電子工業出版社, 2019
Wang H F, Qi G L, Chen H J. Knowledge Graph: Methodology, Practice and Application. Beijing: Publishing House of Electronics Industry, 2019
|
[18] |
閆樹, 魏凱, 洪萬福. 知識圖譜技術與應用. 北京: 人民郵電出版社, 2019
Yan S, Wei K, Hong W F. Knowledge Graph: Technology and Application. Beijing: Posts & Telecom Press, 2019
|
[19] |
趙軍, 劉康, 周光有, 等. 開放式文本信息抽取. 中文信息學報, 2011, 25(6):98
Zhao J, Liu K, Zhou G Y, et al. Open information extraction. J Chin Inform Process, 2011, 25(6): 98
|
[20] |
Quimbaya A P, Munera A S, Rivera R A G, et al. Named entity recognition over electronic health records through a combined dictionary-based approach. Procedia Comput Sci, 2016, 100: 55 doi: 10.1016/j.procs.2016.09.123
|
[21] |
Liu X H, Zhang S D, Wei F R, et al. Recognizing named entities in tweets // Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics. Portland, 2011: 359
|
[22] |
Jain A, Pennacchiotti M. Open entity extraction from web search query logs // Proceedings of the 23rd International Conference on Computational Linguistics. Beijing, 2010: 510
|
[23] |
Zhang S D, Elhadad N. Unsupervised biomedical named entity recognition: Experiments with clinical and biological texts. J Biomed Informatics, 2013, 46(6): 1088 doi: 10.1016/j.jbi.2013.08.004
|
[24] |
劉克彬, 李芳, 劉磊, 等. 基于核函數中文關系自動抽取系統的實現. 計算機研究與發展, 2007, 44(8):1406 doi: 10.1360/crad20070818
Liu K B, Li F, Liu L, et al. Implementation of a kernel-based Chinese relation extraction system. J Comput Res Dev, 2007, 44(8): 1406 doi: 10.1360/crad20070818
|
[25] |
Sun L, Han X P. A feature-enriched tree kernel for relation extraction // Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, 2014: 61
|
[26] |
Sun A, Grishman R. Active learning for relation type extension with local and global data views // Proceedings of the 21st ACM International Conference on Information and Knowledge Management, New York, 2012: 1105
|
[27] |
Fu L S, Grishman R. An efficient active learning framework for new relation types // Proceedings of the Sixth International Joint Conference on Natural Language Processing (IJCNLP). Nagoya, 2013: 692
|
[28] |
Ji G L, Liu K, He S Z, et al. Distant supervision for relation extraction with sentence-level attention and entity descriptions // 31st AAAI Conference on Artificial Intelligence. San Francisco, 2017: 3060
|
[29] |
Feng J, Huang M L, Zhao L, et al. Reinforcement learning for relation classification from noisy data // 32nd AAAI Conference on Artificial Intelligence. New Orleans, 2018: 5779
|
[30] |
Sun T T, Zhang C H, Ji Y, et al. Reinforcement learning for distantly supervised relation extraction. IEEE Access, 2019, 7: 98023 doi: 10.1109/ACCESS.2019.2930340
|
[31] |
Wu F, Weld D S. Autonomously semantifying Wikipedia // Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management. Lisbon, 2007: 41
|
[32] |
Chang K W, Yih W T, Yang B S, et al. Typed tensor decomposition of knowledge bases for relation extraction // 2014 Conference on Empirical Methods in Natural Language Processing. Doha, 2014: 1568
|
[33] |
Zhao X J, Jia Y, Li A P, et al. Multi-source knowledge fusion: A survey // 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). Hangzhou, 2019: 119
|
[34] |
Dong X L, Gabrilovich E, Heitz G, et al. From data fusion to knowledge fusion. Proc VLDB Endowment, 2014, 7(10): 881 doi: 10.14778/2732951.2732962
|
[35] |
Han X P, Zhao J. Named entity disambiguation by leveraging wikipedia semantic knowledge // Proceedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, 2009: 215
|
[36] |
Sen P. Collective context-aware topic models for entity disambiguation // Proceedings of the 21st International Conference on World Wide Web. New York, 2012: 729
|
[37] |
Guo Z C, Barbosa D. Robust named entity disambiguation with random walks. Semantic Web, 2018, 9(4): 459 doi: 10.3233/SW-170273
|
[38] |
Zhu G G, Iglesias C A. Exploiting semantic similarity for named entity disambiguation in knowledge graphs. Expert Syst Appl, 2018, 101: 8 doi: 10.1016/j.eswa.2018.02.011
|
[39] |
Shen W, Wang J Y, Luo P, et al. Linden: linking named entities with knowledge base via semantic knowledge // Proceedings of the 21st International Conference on World Wide Web. New York, 2012: 449
|
[40] |
Ratinov L A, Roth D, Downey D, et al. Local and global algorithms for disambiguation to Wikipedia // Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Portland, 2011: 1375
|
[41] |
Alokaili A, Menai M E B. SVM ensembles for named entity disambiguation. Computing, 2020, 102(4): 1051 doi: 10.1007/s00607-019-00748-x
|
[42] |
Agarwal P, Str?tgen J, Del Corro L, et al. DiaNED: time-aware named entity disambiguation for diachronic corpora // Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Melbourne, 2018: 686
|
[43] |
Dong X L. Challenges and innovations in building a product knowledge graph // Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, 2018: 2869
|
[44] |
蘇佳林, 王元卓, 靳小龍, 等. 自適應屬性選擇的實體對齊方法. 山東大學學報: 工學版, 2020, 50(1):14
Su J L, Wang Y Z, Jin X L, et al. Entity alignment method based on adaptive attribute selection. J Shandong Univ Eng Sci, 2020, 50(1): 14
|
[45] |
Cheng T, Lauw H W, Paparizos S. Entity synonyms for structured web search. IEEE Trans Knowl Data Eng, 2012, 24(10): 1862 doi: 10.1109/TKDE.2011.168
|
[46] |
Pantel P, Crestan E, Borkovsky A, et al. Web-scale distributional similarity and entity set expansion // Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2-Volume 2. Stroudsburg, 2009: 938
|
[47] |
Chakrabarti K, Chaudhuri S, Cheng T, et al. A framework for robust discovery of entity synonyms // Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, 2012: 1384
|
[48] |
Mudgal S, Li H, Rekatsinas T, et al. Deep learning for entity matching: a design space exploration // Proceedings of the 2018 International Conference on Management of Data. Houston, 2018: 19
|
[49] |
Sun Z Q, Hu W, Zhang Q H, et al. Bootstrapping entity alignment with knowledge graph embedding // Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI). Stockholm, 2018: 4396
|
[50] |
Guan S P, Jin X L, Wang Y Z, et al. Self-learning and embedding based entity alignment. Knowl Inform Syst, 2019, 59(2): 361 doi: 10.1007/s10115-018-1191-0
|
[51] |
Zhang Q H, Sun Z Q, Hu W, et al. Multi-view knowledge graph embedding for entity alignment // Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI). Macao, 2019: 5429
|
[52] |
莊嚴, 李國良, 馮建華. 知識庫實體對齊技術綜述. 計算機研究與發展, 2016, 53(1):165
Zhuang Y, Li G L, Feng J H. A survey on entity alignment of knowledge base. J Comput Res Dev, 2016, 53(1): 165
|
[53] |
Deshpande O, Lamba D S, Tourn M, et al. Building, maintaining, and using knowledge bases: a report from the trenches // Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York, 2013: 1209
|
[54] |
Trisedya B D, Qi J Z, Zhang R. Entity alignment between knowledge graphs using attribute embeddings // Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu, 2019: 297
|
[55] |
Chen M H, Tian Y T, Chang K W, et al. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment // Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. Stockholm, 2018: 3998
|
[56] |
Cao Y X, Liu Z Y, Li C J, et al. Multi-channel graph neural network for entity alignment // Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, 2019: 1452
|
[57] |
Lu R, Cai Z P, Zhao S. A survey of knowledge reasoning based on KG. IOP Conf Ser Mater Sci Eng, 2019, 569(5): 052058
|
[58] |
Lao N, Cohen W W. Relational retrieval using a combination of path-constrained random walks. Mach Learn, 2010, 81(1): 53 doi: 10.1007/s10994-010-5205-8
|
[59] |
Wang Q, Liu J, Luo Y F, et al. Knowledge base completion via coupled path ranking // Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, 2016: 1308
|
[60] |
Xiong W H, Hoang T, Wang W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning // Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Denmark, 2017: 575
|
[61] |
Cohen W W. Tensorlog: A differentiable deductive database[J/OL]. arXiv preprint (2016-07-19)[2020-02-28]. https://arxiv.org/abs/1605.06523
|
[62] |
Yang F, Yang Z, Cohen W W. Differentiable learning of logical rules for knowledge base reasoning // 31st Conference on Neural Information Proceeding Systems. Long Beach, 2017: 2319
|
[63] |
Kampffmeyer M, Chen Y B, Liang X D, et al. Rethinking knowledge graph propagation for zero-shot learning // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 11487
|
[64] |
Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data // Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. Lake Tahoe, 2013: 2787
|
[65] |
Wang Z, Zhang J W, Feng J L, et al. Knowledge graph embedding by translating on hyperplanes // Twenty-Eighth AAAI Conference on Artificial Intelligence. Québec, 2014: 1112
|
[66] |
Lin Y K, Liu Z Y, Sun M S, et al. Learning entity and relation embeddings for knowledge graph completion // Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin, 2015: 2181
|
[67] |
Xiao H, Huang M L, Yu H, et al. From one point to a manifold: orbit models for knowledge graph embedding[J/OL]. arXiv preprint (2017-06-17)[2020-02-28]. https://arxiv.org/abs/1512.04792v5
|
[68] |
Feng J, Huang M L, Wang M D, et al. Knowledge graph embedding by flexible translation // Fifteenth International Conference on Principles of Knowledge Representation and Reasoning. Palo Alto, 2016: 557
|
[69] |
Kazemi S M, Poole D. Simple embedding for link prediction in knowledge graphs // Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, 2018: 4289
|
[70] |
Ebisu T, Ichise R. Toruse: Knowledge graph embedding on a lie group // The Thirty-Second AAAI Conference on Artificial Intelligence. Louisiana, 2018: 1819
|
[71] |
Xu C R, Li R J. Relation embedding with dihedral group in knowledge graph // Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, 2019: 263
|
[72] |
Sun Z Q, Deng Z H, Nie J Y, et al. Rotate: Knowledge graph embedding by relational rotation in complex space[J/OL]. arXiv preprint (2019-02-26)[2020-02-28]. https://arxiv.org/pdf/1902.10197.pdf
|
[73] |
Zhang S, Tay Y, Yao L N, et al. Quaternion knowledge graph embeddings // Thirty-third Conference on Neural Information Processing Systems. Vancouver, 2019: 2735
|
[74] |
Nickel M, Tresp V, Kriegel H P. A three-way model for collective learning on multi-relational data // The 28th International Conference on Machine Learning The International Conference on Machine Learning. Bellevue, Washington, 2011: 809
|
[75] |
Yang B S, Yih W T, He X D, et al. Embedding entities and relations for learning and inference in knowledge bases[J/OL]. arXiv preprint (2015-08-29)[2020-02-28]. http://arxiv.org/abs/1412.6575
|
[76] |
Trouillon T, Welbl J, Riedel S, et al. Complex embeddings for simple link prediction // Proceedings of the 33rd International Conference on Machine Learning (ICML). New York City, NY, USA, 2016: 2071
|
[77] |
Liu H X, Wu Y X, Yang Y M. Analogical inference for multi-relational embeddings // Proceedings of the 34th International Conference on Machine Learning. Sydney, 2017: 2168
|
[78] |
Balazevic I, Allen C, Hospedales T M. TuckER: Tensor factorization for knowledge graph completion // Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong, 2019: 5184
|
[79] |
Kristiadi A, Khan M A, Lukovnikov D, et al. Incorporating literals into knowledge graph embeddings[J/OL]. arXiv preprint (2019-07-18)[2020-02-28]. https://arxiv.org/abs/1802.00934
|
[80] |
Zhang W, Paudel B, Zhang W, et al. Interaction embeddings for prediction and explanation in knowledge graphs // Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (WSDM). Melbourne, 2019: 96
|
[81] |
Socher R, Chen D Q, Manning C D, et al. Reasoning with neural tensor networks for knowledge base completion // Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1. Nevada, 2013: 926
|
[82] |
Neelakantan A, Roth B, McCallum A. Compositional vector space models for knowledge base inference[J/OL]. arXiv preprint (2015-05-27)[2020-02-28]. https://arxiv.org/abs/1504.06662
|
[83] |
Das R, Neelakantan A, Belanger D, et al. Chains of reasoning over entities, relations, and text using recurrent neural networks // Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1. Valencia, 2017: 132
|
[84] |
Graves A, Wayne G, Reynolds M, et al. Hybrid computing using a neural network with dynamic external memory. Nature, 2016, 538(7626): 471 doi: 10.1038/nature20101
|
[85] |
Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2D knowledge graph embeddings // Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans, 2018: 1811
|
[86] |
Vashishth S, Sanyal S, Nitin V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions// Proceedings of the AAAI Conference on Artificial Intelligence, New York, 2020: 3009
|
[87] |
Guo S, Ding B Y, Wang Q, et al. Knowledge base completion via rule-enhanced relational learning // China Conference on Knowledge Graph and Semantic Computing. Beijing, 2016: 219
|
[88] |
Lu K, Zhang S, Stone P, et al. Robot representation and reasoning with knowledge from reinforcement learning[J/OL]. arXiv preprint (2018-11-22)[2020-02-28]. http://arxiv.org/pdf/1809.11074.pdf
|
[89] |
Xie R B, Liu Z Y, Jia J, et al. Representation learning of knowledge graphs with entity descriptions // Thirtieth AAAI Conference on Artificial Intelligence. Arizona, 2016: 2659
|
[90] |
Wang H. ReNN: Rule-embedded neural networks // 24th International Conference on Pattern Recognition. Beijing, 2018: 824
|
[91] |
Zhang W, Paudel B, Wang L, et al. Iteratively learning embeddings and rules for knowledge graph reasoning // The World Wide Web Conference. San Francisco, 2019: 2366
|
[92] |
Nie B L, Sun S Q. Knowledge graph embedding via reasoning over entities, relations, and text. Future Generat Comput Syst, 2019, 91: 426 doi: 10.1016/j.future.2018.09.040
|
[93] |
Guan N N, Song D D, Liao L J. Knowledge graph embedding with concepts. Knowl Based Syst, 2019, 164: 38 doi: 10.1016/j.knosys.2018.10.008
|
[94] |
Mendes P N, Mühleisen H, Bizer C. Sieve: linked data quality assessment and fusion // Proceedings of the 2012 Joint EDBT/ICDT Workshops. Berlin, 2012: 116
|
[95] |
Fader A, Soderland S, Etzioni O. Identifying relations for open information extraction // Proceedings of the Conference on Empirical Methods in Natural Language Processing. Edinburgh, 2011: 1535
|
[96] |
Dong X, Gabrilovich E, Heitz G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion // Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, 2014: 601
|
[97] |
Tan C H, Agichtein E, Ipeirotis P, et al. Trust, but verify: predicting contribution quality for knowledge base construction and curation // Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York, 2014: 553
|
[98] |
Wang J, Wang Z Y, Zhang D W, et al. Combining knowledge with deep convolutional neural networks for short text classification // Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, 2017: 2915
|
[99] |
Logan I R L, Liu N F, Peters M E, et al. Barack's wife hillary: Using knowledge-graphs for fact-aware language modeling // The 57th Annual Meeting of the Association for Computational Linguistics. Florence, 2019: 5962
|
[100] |
Bauer L, Wang Y C, Bansal M. Commonsense for generative multi-hop question answering tasks // Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, 2018: 4220
|
[101] |
朱宗奎, 張鵬舉, 賈永輝, 等. 基于多標簽策略的中文知識圖譜問答研究. 計算機工程, https://doi.org/10.19678/j.issn.1000-3428.0056763
Zhu Z K, Zhang P J, Jia Y H, et al. Chinese knowledge base question answering based on multi-label strategy. Comput Eng, https://doi.org/10.19678/j.issn.1000-3428.0056763
|
[102] |
Wang X, He X N, Cao Y X, et al. KGAT: Knowledge graph attention network for recommendation // Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, 2019: 950
|
[103] |
Ji S X, Pan S R, Cambria E, et al. A survey on knowledge graphs: representation, acquisition and applications[J/OL]. arXiv preprint (2020-02-02)[2020-02-28]. http://arxiv.org/abs/2002.00388
|
[104] |
Ji Y C. Welcome to Magi[EB/OL]. Peak Labs (2019-08-20)[2020-02-28]. https://www.peak-labs.com/docs/en/magi/intro
|